Skip to main content
Log in

One-Step Synthesis of Liquid Hydrocarbons from CO2 Using Hybrid Intergrowth Structure Zeolites

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

One-step CO2 conversion to liquid hydrocarbons (Emission-to-Liquid) was carried out at 340°C and 10.0 MPa in the presence of tandem catalyst. This catalyst consisted of two components loaded in a layered manner: a copper–zinc oxide component responsible for the synthesis of methanol from CO2, and a zeolite component responsible for the conversion of methanol to liquid hydrocarbons. The structural effects of the zeolite component (Hybrid Intergrowth Structure Zeolites) on the yield and hydrocarbon composition of the liquid product were investigated. The textural properties of the zeolite component were found to be critical to the hydrocarbon composition of the liquid product. Hybrid co-crystalline structures, namely MFI–MEL and MFI–MCM-41, with their large volume of mesopores, significantly enhanced the content of aromatics in the liquid hydrocarbon product. This was achieved not only due to the reduced diffusion limitations for product removal from the zeolite pores but also due to the activation of secondary aromatization reactions in the catalyst mesopores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Hua, Z., Yang, Y., and Liu, J., Coord. Chem. Rev., 2023, vol. 478, p. 214982. https://doi.org/10.1016/j.ccr.2022.214982

    Article  CAS  Google Scholar 

  2. Alli, Y.A., Oladoye, P.O., Ejeromedoghene, O., Bankole, O.M., Alimi, O.A., Omotola, E.O., Olanrewaju, C.A., Philippot, K., Adeleye, A.S., and Ogunlaja, A.S., Sci. Total Environ., 2023, vol. 868, pp. 161547. https://doi.org/10.1016/j.scitotenv.2023.161547

    Article  CAS  PubMed  ADS  Google Scholar 

  3. Sholeha, N.A., Holilah, H., Bahruji, H., Ayub, A., Widiastuti, N., Ediati, R., Jalil, A.A., Ulfa, M., Masruchin, N., Nugraha, R.E., and Prasetyoko, D., South African J. Chem. Eng., 2023, vol. 44, pp. 14–30. https://doi.org/10.1016/j.sajce.2023.01.002

    Article  Google Scholar 

  4. Dement’ev, K.I., Dementeva, O.S., Ivantsov, M.I., Kulikova, M.V., Magomedova, M.V., Maximov, A.L., Lyadov, A.S., Starozhitskaya, A.V., and Chudakova, M.V., Petrol. Chem., 2022, vol. 62, no. 5, pp. 445–474. https://doi.org/10.1134/S0965544122050012

    Article  Google Scholar 

  5. Magomedova, M.V., Starozhitskaya, A.V., Afokin, M.I., Perov, I., Kipnis, M.A., and Lin, G.I., Petrol. Chem., 2020, vol. 60, no. 11, pp. 1244–1250. https://doi.org/10.1134/S0965544120110146

    Article  CAS  Google Scholar 

  6. Kamkeng, A.D.N., Wang, M., Hu, J., Du, W., Qian, F., Wang, M., Hu, J., Du, W., and Qian, F., Chem. Eng. J., 2021, vol. 409, pp. 128138.

    Article  CAS  Google Scholar 

  7. https://www.carbonrecycling.is/news-media/cri-chemical-plant-project-in-china-will-recycle-150000-tons-of-co2-per-year-to-make-materials-for-solar-panels

  8. https://www.carbonrecycling.is/project-goplant

  9. Pérez-Fortes, M. and Tzimas, E., Sci. Tech. Res. Ser., 2016. https://doi.org/10.2790/89238

  10. Li, Y., Zeng, L., Pang, G., Wei, X., Wang, M., Cheng, K., Kang, J., Serra, J.M., Zhang, Q., and Wang, Y., Appl. Catal. B: Environ., 2023, vol. 324. 122299. https://doi.org/10.1016/j.apcatb.2022.122299

  11. Wen, C., Jin, K., Lu, L., Jiang, Q., Wu, J., Zhuang, X., Zhang, X., Chen, L., Wang, C., and Ma, L., Fuel, 2023, vol. 331, part 2, p. 125855. https://doi.org/10.1016/j.fuel.2022.125855

    Article  CAS  Google Scholar 

  12. Song, G., Zhai, Y., Jiang, Q., and Liu, D., Fuel, 2023, vol. 338, pp. 127185. https://doi.org/10.1016/j.fuel.2022.127185

    Article  CAS  Google Scholar 

  13. Jiang, Y., Wang, K., Wang, Y., Liu, Z., Gao, X., Zhang, J., Ma, Q., Fan, S., Zhao, T.-S., and Yao, M., J. CO2 Util., 2023, vol. 67, p. 102321. https://doi.org/10.1016/j.jcou.2022.102321

    Article  CAS  Google Scholar 

  14. Wang, W., Toshcheva, E., Ramirez, A., Shterk, G., Ahmad, R., Caglayan, M., Cerrillo, L., Dokania, A., Clancy, G., Shoinkhorova, T.B., Hijazi, N., Cavallo, L., and Gascon, J., Catal. Sci. Technol, Royal Soc. Chem., 2023, vol. 13, pp. 1527–1540. https://doi.org/10.1039/d2cy01880b

    Article  CAS  Google Scholar 

  15. Wei, J., Ge, Q., Yao, R., Wen, Z., Fang, C., Guo, L., Xu, H., and Sun, J., Nat. Commun., 2017, vol. 8, no. 1, pp. 15174. https://doi.org/10.1038/ncomms15174

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  16. Nezam, I., Zhou, W., Gusmão, G.S., Realff, M.J., Wang, Y., Medford, A.J., and Jones, C.W., CO2 Util., 2021, vol. 45, pp. 101405. https://doi.org/10.1016/j.jcou.2020.101405

    Article  CAS  Google Scholar 

  17. Sibi, M.G., Khan, M.K., Verma, D., Yoon, W., and Kim, J., Appl. Catal. B: Environ., 2022, vol. 301, p. 120813. https://doi.org/10.1016/j.apcatb.2021.120813

    Article  CAS  Google Scholar 

  18. Nezam, I., Zhou, W., Shah, D.R., Bukhovko, M.P., Ball, M.R., Gusmão, G.S., Medford, A.J., and Jones, C.W., J. Phys. Chem. C, 2023, vol. 127, no. 13, pp. 6356–6370. https://doi.org/10.1021/acs.jpcc.3c01306

    Article  CAS  Google Scholar 

  19. Parra, O., Portillo, A., Ereña, J., Aguayo, A.T., Bilbao, J., and Ateka, A., Fuel Process. Technol., 2023, vol. 245, article 107745. https://doi.org/10.1016/j.fuproc.2023.107745

  20. Xie, T., Ding, J., Shang, X., Zhang, X., and Zhong, Q., J. Colloid Interface Sci., 2023, vol. 635, pp. 148–158. https://doi.org/10.1016/j.jcis.2022.12.086

    Article  CAS  PubMed  ADS  Google Scholar 

  21. To, A.T., Arellano-Treviño, M.A., Nash, C.P., Ruddy, D.A., J. CO2 Util., 2022, vol. 66. 102261. https://doi.org/10.1016/j.jcou.2022.102261

  22. Tian, H., Jiao, J., Zha, F., Guo, X., Tang, X., Chang, Y., and Chen, H., Catal. Sci. Technol., 2022, vol. 12, no. 3, pp. 799–811. https://doi.org/10.1039/d1cy01570b

    Article  CAS  Google Scholar 

  23. Li, Y., Wang, M., Liu, S., Wu, F., Zhang, Q., Zhang, S., Cheng, K., and Wang, Y., ACS Catal., 2022, vol. 12, no. 15, pp. 8793–8801. https://doi.org/10.1021/acscatal.2c02125

    Article  CAS  Google Scholar 

  24. Tian, H., He, H., Jiao, J., Zha, F., Guo, X., Tang, X., and Chang, Y., Fuel, 2022, vol. 314, pp. 123119. https://doi.org/10.1016/j.fuel.2021.123119

    Article  CAS  Google Scholar 

  25. Wang, T., Yang, C., Gao, P., Zhou, S., Li, S., Wang, H., and Sun, Y., Appl. Catal. B: Environ., 2021, vol. 286, p. 119929. https://doi.org/10.1016/j.apcatb.2021.119929

    Article  CAS  Google Scholar 

  26. Zhang, X., Zhang, A., Jiang, X., Zhu, J., Liu, J., Li, J., Zhang, G., Song, C., and Guo, X., J. CO2 Util., 2019, vol. 29, pp. 140–145. https://doi.org/10.1016/j.jcou.2018.12.002

    Article  CAS  Google Scholar 

  27. Ramirez, A., Dutta Chowdhury, A., Dokania, A., Cnudde, P., Caglayan, M., Yarulina, I., AbouHamad, E., Gevers, L., Ould-Chikh, S., De Wispelaere, K., Van Speybroeck, V., and Gascon, J., ACS Catal., 2019, vol. 9, no. 7, pp. 6320–6334. https://doi.org/10.1021/acscatal.9b01466

    Article  CAS  Google Scholar 

  28. Zhou, C., Shi, J., Zhou, W., Cheng, K., Zhang, Q., Kang, J., and Wang, Y., ACS Catal., 2020, vol. 10, no. 1, pp. 302–310. https://doi.org/10.1021/acscatal.9b04309

    Article  CAS  Google Scholar 

  29. Ni, Y., Chen, Z., Fu, Y., Liu, Y., Zhu, W., and Liu, Z., Nat. Commun., 2018, vol. 9, p. 3457. https://doi.org/10.1038/s41467-018-05880-4

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  30. Yarulina, I., Chowdhury, A.D., Meirer, F., Weckhuysen, B.M., and Gascon, J., Nat. Catal., 2018, vol. 1, no. 6, pp. 398–411. https://doi.org/10.1038/s41929-018-0078-5

    Article  CAS  Google Scholar 

  31. Magomedova, M.V., Starozhitskaya, A.V., Davidov, I.A., Tsaplin, D.E., and Maximov, A.L., Catalysts, 2023, vol. 13, no. 3, pp. 570. https://doi.org/10.3390/catal13030570

    Article  CAS  Google Scholar 

  32. Miao, C., Shang, K., Liang, L., Chen, S., and Ouyang, J., ACS Sustain. Chem. Eng., 2022, vol. 10, no. 38, pp. 12771–12782. https://doi.org/10.1021/acssuschemeng.2c03693

    Article  CAS  Google Scholar 

  33. Millward, G.R., Ramdas, S., Thomas, J.M., and Barlow, M.T., J. Chem. Soc. Faraday Trans. 2, 1983, vol. 79, no. 7, pp. 1075–1082. https://doi.org/10.1039/F29837901075

    Article  CAS  Google Scholar 

  34. Li, P., Zhang, W., Han, X., and Bao, X., Catal. Lett., 2010, vol. 134, nos. 1–2, pp. 124–130. https://doi.org/10.1007/s10562-009-0214-6

    Article  CAS  Google Scholar 

  35. Kim, J.J., Jeong, D.J., Jung, H.S., Hur, Y.G., Choung, J.W., Baik, J.H., Park, M.J., Chung, C.H., and Bae, J.W., Micropor. Mesopor. Mater., 2022, vol. 340, p. 112034. https://doi.org/10.1016/j.micromeso.2022.112034

    Article  CAS  Google Scholar 

  36. Magomedova, M., Starozhitskaya, A., Davidov, I., Maximov, A., and Kravtsov, M., Catalysts, 2021, vol. 11, no. 12. https://doi.org/10.3390/catal11121459

  37. Olsbye, U., Svelle, S., Bjrgen, M., Beato, P., Janssens, T.V.W., Joensen, F., Bordiga, S., Lillerud, K.P., Angew. Chemie Int. Ed., 2012, vol. 51, no. 24, pp. 5810–5831. https://doi.org/10.1002/ANIE.201103657

    Article  CAS  Google Scholar 

  38. Tsaplin, D.E., Kulikov, L.A., Maksimov, A.L., and Karakhanov, E.A., Patent RU 2773945C1, 2022. https://yandex.ru/patents/doc/RU2773945C1_20220614

  39. Maksimov, A.L., Magomedova, M.V., Afokin, M.I., Tsaplin, D.E., Kulikov, L.A., and Ionin, D.A., Patent RU 2753263C1, 2021.

  40. Maximov, A.L., Magomedova, M.V., Galanova, E.G., Afokin, M.I., and Ionin, D.A., Fuel Process. Technol., 2020, vol. 199, pp. 106281. https://doi.org/10.1016/j.fuproc.2019.106281

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by the Russian Science Foundation (project no. 17-73-30046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Starozhitskaya.

Ethics declarations

A.L. Maximov, a co-author, is the editor-in-chief at the Neftekhimiya (Petroleum Chemistry) Journal. The other co-authors declare no conflict of interest requiring disclosure in this article.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magomedova, M.V., Starozhitskaya, A.V., Galanova, E.G. et al. One-Step Synthesis of Liquid Hydrocarbons from CO2 Using Hybrid Intergrowth Structure Zeolites. Pet. Chem. 63, 1219–1227 (2023). https://doi.org/10.1134/S0965544123080091

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544123080091

Keywords:

Navigation