Skip to main content
Log in

A Kinetic Model and Mechanism for Liquid-Phase Heterogeneous Hydrogenation of Dicyclopentadiene

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

The study investigates the main routes of liquid-phase hydrogenation of endo-tricyclo[5.2.1.02,6]deca-3,8-diene (dicyclopentadiene, (1)) in the presence of a PK-25 palladium catalyst (Pd/γ-Al2O3, 0.25% Pd). All the reaction products were identified, and the material balance was examined. Mild conditions were chosen for the hydrogenation of (1) to ensure that the norbornane framework was retained. For (1), like for other norbornene derivatives, the effect of prevalent adsorption of a norbornene double bond on an active site (AS) of palladium was confirmed, in contrast to other types of double bonds. Based on a combination of experimental and theoretical data, a consistent mechanism was proposed for the process, in which endo-tricyclo[5.2.1.02,6]decane (3) is obtained as the only final product. The kinetic order with respect to (1) was found to be zero within a wide range of its initial concentrations; the hydrogenation of the intermediate cycloalkene—endo-tricyclo[5.2.1.02,6]deca-3-ene (2)—was shown to have the first kinetic order. The activation parameters of the liquid-phase hydrogenation of both (1) and (2) were further determined. Based on the Langmuir–Hinshelwood approach and the concept of multiple adsorption of substrates on a single AS, an adequate kinetic model of the process was developed. It was shown that three process steps occurring by two routes significantly contributed to the reaction rate. The rate constants of these reaction steps and the adsorption constants of AS complexes with unsaturated compounds were estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Ushakov, N.V., Russ. J. Appl. Chem., 2020, vol. 93, pp. 159–166. https://doi.org/10.1134/s1070427220020019

    Article  CAS  Google Scholar 

  2. Flid, V.R., Gringolts, M.L., Shamsiev, R.S., and Finkelshtein, E.Sh., Russ. Chem. Rev., 2018, vol. 87, pp. 1169–1205. https://doi.org/10.1070/RCR4834

    Article  CAS  Google Scholar 

  3. Jamróz, M.E., Gałka, S., and Dobrowolski, J.C., J. Mol. Struct. (Theochem.), 2003, vol. 634, pp. 225–233. https://doi.org/10.1016/S0166-1280(03)00348-8

    Article  CAS  Google Scholar 

  4. Kirk-Othmer Encyclopedia of Chemical Technology, Keenan, M.J., Ed., New York: Wiley & Sons. Inc., 1993, vol. 7, pp. 859–876.

  5. Flammersheim, H.J. and Opfermann, J., Thermochim. Acta, 1999, vol. 337, pp. 149–153. https://doi.org/10.1016/S0040-6031(99)00163-X

    Article  CAS  Google Scholar 

  6. Woodward, R.B. and Hoffmann, R., Angew. Chem. Int. Ed., 1969, vol. 8, pp. 781–853. https://doi.org/10.1002/anie.196907811

    Article  CAS  Google Scholar 

  7. Hammond, G.S., Turro, N.J., and Liu, R.S.H., J. Org. Chem., 1963, vol. 28, pp. 3297–3303. https://doi.org/10.1021/Jo01047A005

    Article  CAS  Google Scholar 

  8. Turro, N.J. and Hammond, G.S., J. Am. Chem. Soc., 1962, vol. 84, pp. 2841–2842. https://doi.org/10.1021/Ja00873A050

    Article  CAS  Google Scholar 

  9. Kovačič, S. and Slugovc, C., Mater. Chem. Front., 2020, vol. 4, no. 8, pp. 2235–2255. https://doi.org/10.1039/D0QM00296H

    Article  Google Scholar 

  10. Leguizamon, S.C., Cook, A.W., and Appelhans, L.N., Chem. Mater., 2021, vol. 33, no. 24, pp. 9677–9689. https://doi.org/10.1021/acs.chemmater.1c03298

    Article  CAS  Google Scholar 

  11. Mann, M., Zhang, B., Tonkin, S.J., Gibson, C.Т., Jia, Z., Hasell, T., and Chalker, J.M., Polym. Chem., 2022, vol. 13, pp. 1320–1327. https://doi.org/10.33774/chemrxiv-2021-n91h4

    Article  CAS  Google Scholar 

  12. Kirk-Othmer Encyclopedia of Chemical Technology, Keenan, M.J., Ed., New York: Wiley & Sons. Inc., 2001, vol. 24, p. 540.

  13. Worzakowska, M., Polym. Bull., 2012, vol. 68, pp. 775–787. https://doi.org/10.1007/s00289-011-0585-x

    Article  CAS  Google Scholar 

  14. Khan, A., Ali, S.S., Chodimella, V.P., Farooqui, S.A., Anand, M., and Sinha, A.K., Ind. Eng. Chem. Res., 2021, vol. 60, pp. 1977–1988. https://doi.org/10.1021/acs.iecr.0c06168

    Article  CAS  Google Scholar 

  15. Zhang, Z., Liu, R., Li, W., Liu, Y., Pei, Z., and Qiu, J., J. Manuf. Process., 2021, vol. 71, pp. 753–762. https://doi.org/10.1016/j.jmapro.2021.10.014

    Article  Google Scholar 

  16. Behr, A., Manz, V., Lux, A., and Ernst, A., Catal. Lett., 2013, vol. 143, no. 3, pp. 241–245. https://doi.org/10.1007/s10562-013-0960-3

    Article  CAS  Google Scholar 

  17. Skála, D. and Hanika, J., Chem. Papers, 2008, vol. 62, no. 2, pp. 215–218. https://doi.org/10.2478/s11696-008-0013-3

    Article  CAS  Google Scholar 

  18. Hao, M., Yang, B., Wang, H., Liu, G., and Qi, S., J. Phys. Chem. A, 2010, vol. 114, no. 11, pp. 3811–3817. https://doi.org/10.1021/jp9060363

    Article  CAS  PubMed  Google Scholar 

  19. Vereshchagina, N.V., Antonova, T.N., Kopushkina, G.Yu., and Abramov, I.G., Kinet. Catal., 2017, vol. 58, pp. 255–261. https://doi.org/10.1134/S0023158417030120

    Article  CAS  Google Scholar 

  20. Bermeshev, M.V., Antonova, T.N., Shangareev, D.R., Danilova, A.S., and Pozharskaya, N.A., Petrol. Chem., 2018, vol. 58, pp. 869–875. https://doi.org/10.1134/S0028242118050039

    Article  CAS  Google Scholar 

  21. Chung, S.H., Park, G.H., Schukkink, N., Lee, H., and Shiju, N.R., Chem. Commun., 2023, vol. 59, pp. 756–759. https://doi.org/10.1039/D2CC05305E

    Article  CAS  Google Scholar 

  22. Antonova, T.N., Abramov, I.A., Feldblyum, V.Sh., Abramov, I.G., and Danilova, A.S., Petrol. Chem., 2009, vol. 49, no. 5, pp. 366–368. https://doi.org/10.1134/S0965544109050041

    Article  Google Scholar 

  23. Liu, G., Mi, Z., Wang, Li., and Zhang, X., Ind. Eng. Chem. Res., 2005, vol. 44, pp. 3846–3851. https://doi.org/10.1021/ie0487437

    Article  CAS  Google Scholar 

  24. Zou, J.-J., Zhang, X., Kong, J., Wang, L., Zou, J.-J., Zhang, X., Kong, J., and Wang, L., Fuel, 2008, vol. 87, pp. 3655–3659. https://doi.org/10.1016/j.fuel.2008.07.006

    Article  CAS  Google Scholar 

  25. Zamalyutin, V.V., Ryabov, A.V., Nichugovskii, A.I., Skryabina, A.Yu., Tkachenko, O.Yu., and Flid, V.R., Russ. Chem. Bull., 2022, vol. 71, pp. 70–75. https://doi.org/10.1007/s11172-022-3378-5

    Article  CAS  Google Scholar 

  26. Zamalyutin, V.V., Ryabov, A.V., Solomakha, E.A., Katsman, E.A., Flid, V.R., Tkachenko, O.Yu., and Shpinyova, M.A., Russ. Chem. Bull., 2022, vol. 71, pp. 1204–1208. https://doi.org/10.1007/s11172-022-3521-3

    Article  CAS  Google Scholar 

  27. Zamalyutin, V.V., Shamsiev, R.S., and Flid, V.R., Russ. Chem. Bull., 2022, pp. 2142–2148. https://doi.org/10.1007/s11172-022-3639-3

  28. Zamalyutin, V.V., Katsman, E.A., Danyushevsky, V.Y., Flid, V.R., Podol’skii, V.V., and Ryabov, A.V., Russ. J. Coord. Chem., 2021, vol. 47, no. 10, pp. 695–701. https://doi.org/10.31857/S0132344X21100091

    Article  CAS  Google Scholar 

  29. Zamalyutin, V.V., Katsman, E.A., Ryabov, A.V., Skryabina, A.Y., Shpinyova, M.A., Danyushevsky, V.Y., and Flid, V.R., Kinet. Catal., 2022, vol. 63, no. 2, pp. 234–242. https://doi.org/10.31857/S0453881122020150

    Article  CAS  Google Scholar 

  30. Menges, N. and Balci, M., Synlett., 2014, no. 25, pp. 671–676. https://doi.org/10.1055/S-0033-1340554

    Article  CAS  Google Scholar 

  31. Temkin, O.N., Homogeneous Catalysis with Metal Complexes: Kinetic Aspects and Mechanisms, New York: Wiley, 2012.

Download references

ACKNOWLEDGMENTS

This work was performed using equipment of the Shared Research Center of RTU MIREA.

Funding

This study was funded by the Russian Science Foundation (project no. 23-73-00123).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. V. Zamalyutin or V. R. Flid.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zamalyutin, V.V., Katsman, E.A., Tkachenko, O.Y. et al. A Kinetic Model and Mechanism for Liquid-Phase Heterogeneous Hydrogenation of Dicyclopentadiene. Pet. Chem. 63, 959–967 (2023). https://doi.org/10.1134/S0965544123060099

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544123060099

Keywords:

Navigation