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Abstract—We propose a mathematical model of COVID-19 pandemic preserving an optimal balance
between the adequate description of a pandemic by SIR model and simplicity of practical estimates.
As base model equations, we derive two-parameter nonlinear first-order ordinary differential equa-
tions with retarded time argument, applicable to any community (country, city, etc.).The presented
examples of modeling the pandemic development depending on two parameters: the time of possible
dissemination of infection by one virus carrier and the probability of contamination of a healthy pop-
ulation member in a contact with an infected one per unit time, e.g., a day, is in qualitative agreement
with the dynamics of COVID-19 pandemic. The proposed model is compared with the SIR model.
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1. INTRODUCTION
Mathematical models of infection spreading are of particular importance in the case of global pandem-

ics. Even though unable to reproduce entire picture of the pandemic, they provide qualitative predictions
of its development and reveal the specific dynamic patterns, which may be helpful in optimal planning of
social preventive measures that would allow a certain degree of controlling the situation. These measures
are the subject of heated debate, as they significantly change the daily life of people and have large eco-
nomic consequences. Note, for example, that the effectiveness of social distancing to reduce the peak
incidence was demonstrated as long ago as during the Spanish f lu pandemic in 1918–1919 [1]. Novel fore-
casting tools based on mathematical modelling provide an arguable advantage to facilitate the adapting
and adjusting process, by promoting efficient resource management at individual and institutional levels.

The attempts of mathematical modeling of infections have a long history of more than a hundred years
[2–4]. Later Kermack and McKendrick [5] considered the progress of an epidemic in a closed homoge-
neous population assuming that complete immunity is conferred by a single attack, and that an individual
is not infective at the moment at which he receives infection. With these assumptions, the problem was
finally reduced to a Volterra-type integro-differential equation the analysis of which allowed such conclu-
sions as the existence of threshold population density below which no epidemic can occur, the crucial role
of small changes of the infectivity rate, and the end of an epidemic before the susceptible population has
been exhausted. The model was generalized [6] by considering the effect of the continuous introduction
of fresh susceptible individuals into the population (birth, immigration, etc.). Similar results were indi-
cated when the transmission of infection was through an intermediate host [5].

Naturally, the COVID-19 pandemic stimulated a burst of interest to developing prediction tools based
on mathematical modelling. Particular aims and approaches of different research teams are rather differ-
ent. For example, Uhlig et al. [7], based on deterministic compartment models proposed an empirical
top-down modeling approach to provide epidemic forecasts and risk calculations for (local) outbreaks.
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Based on initial results, the authors of [7] foresee a statistical framework of the proposed type to drive web-
based automatic platforms to democratize the dissemination of prognosis results.

For operative estimations, simpler models are desirable. The easiest approach is curve fitting of avail-
able data. In [8] the number of cumulative diagnosed positive COVID-19 cases  was assumed to be an
error function. This is true if the number of daily new cases  can be described by a Gaussian distribu-
tion, which is typically not the case [9]. Köhler-Rieper et al. [9] proposed a deterministic forecast model
for COVID-19 epidemic in which the model dynamics is expressed by a single prognostic variable ,
entering an integro-differential equation as a time-dependent coefficient. The model [9] shows similari-
ties to classic compartmental models, such as SIR [10], and the variable  can be interpreted as the
effective reproduction number. The authors of [9] consider it a principal advantage, since the model is for-
mulated with the most trustable statistical data variable: the number of cumulative diagnosed positive
cases of COVID-19. They have applied the model to more than 15 countries and results are available via
a web-based platform [11].

As an alternative to integro-differential equation, in the present paper we use an approach based on
retarded differential equations [12], a particular case of functional differential equations. Such delay mod-
els follow the strategy of modelling the removal process not with a separate variable but with a time shift
in the function describing the number of cumulative cases. Dell’Anna [13] presented an example of appli-
cation of a delay model to COVID-19 problem. The equivalence of integro-differential and retarded dif-
ferential equations can be demonstrated, e.g., the authors of [9] show that the basic equation of their
model is identical to the retarded differential equation in [7] provided the appropriate choice of the inte-
gration weighting function.

Our model equation is analogous to the general model of [5, 13], however, the subsequent analysis in
[13] is carried out with a simplified equation neglecting the so-called logistic factor (see below), i.e. in a
particular case of negligibly small number of infected individuals compared to the population, which is
valid globally, but questionable in small populations The interrelation between our model and the SIR
model will be analyzed below

2. BASIC DEFINITIONS

 is the population size.
 is the number of infected individuals at the moment of time .

 is the time, during which the infection can be spread by a single virus carrier. It can be either the nat-
ural disease duration, or the time interval from the moment of contamination to the moment of the carrier
isolation from communicating with other individuals. In the present consideration,  is a model parame-
ter.

 is the number of subjects still ill, but already not virus carriers. Obviously, at  it is zero,
.

 is the number of virus carriers at the moment of time .
 is the non-infected population size.

 is the density of virus carriers in the population.
 is the probability of contamination of a healthy individual as a result of a contact with a virus carrier

per unit time (e.g., per day). This probability is defined as the probability of contamination in a single con-
tact with a virus carrier multiplied by the number of contacts of a individual with all population members
per unit time. In the present consideration,  is a model parameter.

 is the probability of contamination during a time interval , e.g.,
during a day, for one individual at a given density of infection carriers.

Then the number of infected during unit time

(1)

determines an equation for time dependence of the infected individuals number. Thus, we get an equation
for the change of the infected individuals number with time:
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or its continuous analog:

(3)

It is seen that in the model we can use the notion of density rather than the number of population mem-
bers. Introducing the notation , we rewrite (3) in the form

(4)

independent of the number of population members and applicable to the description of any community
(country, city, etc.).

In Eq. (4) there are two model parameters  and . By merely introducing a “universal time scale” 
in the units of , , Eq. (4) can be rewritten in the form

(5)

with a single parameter , which within the definition (see above) represents the number of newly
infected population members by one earlier infected individual. It is intuitively clear that if , then
the number of infected individuals in the population will decrease, and if  it will increase, in full
analogy with the kinetics of chain (nuclear) reaction. Note that in [13] the so called logistic factor

 is set to be 1, which is true only when .
One more note should be made. Equation (5), as well as Eqs. (4) and (3), in our setting possess an ana-

lytical solution. To demonstrate it more clearly, let us introduce the notations

Since in such discretization procedure

the equation for  yields a chain of equations

The equation for  involves no time-shifted terms and can be solved explicitly:

Hence, the equation for :

belongs to equations of the type
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with known function , which have analytical solutions. In particular, the solution that satisfies the ini-
tial condition , can be written as:

The analytical solutions presented above are applicable to complete analysis of the pandemic develop-
ment within the proposed model, but it requires operation with too cumbersome expressions. Without the
analysis of a general solution, the only useful feature of this consideration is the following. If the function

, defined piecewise by the solutions on intervals with the duration  is continuous, the derivative
 will be continuous as well, except a single point . At this point  cannot be zero

(for such initial conditions only a trivial solution  exists), and the derivative, determined by Eqs. (4)
or (5), will always have a discontinuity.

Having discussed the possibilities of the analytical solution, then, at this stage of consideration, we will
not use it because of its complexity. We will investigate the rather obvious properties of solutions in the
linear approximation or analyze the numerical solutions of Eqs. (4) and (5).

3. PRELIMINARY STUDY
3.1. Initial Stage

It is seen that Eq. (4) is nonlinear and nonlocal due to the time-shifted term. However, at the initial
stage when only a small part of the population is infected and , Eq. (4) can be analyzed in the lin-
ear approximation

(6)

We start from the beginning of infection, when . In this case Eq. (6) has an exponential solu-
tion

(7)

with the relative increment of the number of infected individuals (e.g., per day,  day)

(8)

Thus, the coefficient  determines the relative growth of the number of infected individuals in the begin-
ning of pandemic. Its values amount to  (see data for any country according to the Hopkins Insti-
tute). With the introduction of (self) isolation regime, the coefficient  decreases and becomes close to

 (Hopkins Institute data again). To understand further change of infection rage it is necessary to
analyze Eq. (6) with the retarded term taken into account. Note that the solution

(9)

satisfies Eq. (6), if  satisfies transcendental equations

(10)

which is easily rewritten into an equation for :

(11)
Therefore, generally, the relative number of infected during a day a few weeks after the beginning of the
pandemic will be determined by the parameter :
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which, in turn, is determined by Eq. (11). For  Eqs. (10) and (11) have solutions , i.e., the
solutions of Eqs. (7) and (9) coincide. Note that at , , and at , , i.e.,

 practically equals  (within commonly available data from Wikipedia) already at . The second
obvious solution of Eq. (10), , gives rise to a constant contribution that can be neglected in the region
of the solution exponential growth, except the case, when there is only one solution of Eqs. (10) and (11).
The latter takes place when . In this case the solution  is unique, and the possibility to stop
pandemic at the stage before global infection arises.

3.2. Final Stage

The solution , i.e., “everybody is infected” satisfies Eq. (4). Moreover, any constant satisfies
Eq. (4). Therefore the solution of Eq. (4) may tend to any constant, including those smaller than 1, i.e.,
the pandemic can be terminated at incomplete infection of the population.

A simple approximation allows estimating the peak of diseases, that is, finding the conditions under
which

For this purpose in Eq. (4) we expand  in a Taylor series in terms of :

and under the condition of zero second derivative, obtain from Eq. (4) an equation for the peak number
of infected individuals :

(13)

or

(14)

Below, when demonstrating the behavior of  and ), we will see good agreement of  from Eq. (14)
with realistic calculations, in spite of using rather rough estimate (13). Moreover, noting that the equation
for the variable : 

(15)

coincides with Eq. (4) with the new effective , we will consider  small compared to , so
that the analysis considered above with the solution of the type

(16)

is acceptable. We substitute (16) into (15) and get for  instead of Eq. (11) an equation with the effec-
tive , i.e.,

(17)

which at  has a trivial solution .

Comparing with the condition (13) of passing the peak of diseases, i.e., assuming , the growth
of the epidemic can be described by the following scenario: with an increase in the number of cases, the
effective constant  decreases and reaches . At this point, the rate of increase in the number of
cases reaches a maximum. Further, the epidemic is declining. It is very likely that this stage can be called
the inertial period.
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Fig. 1. (a) Density of the number of infected individuals  versus time  (days), (b) absolute growth rate of the infected
number density , (c) relative growth rate of the infected number density  at ,  days, ,
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Fig. 2. (a) Density of the number of infected individuals  versus time  (days), (b) absolute growth rate of the infected
number density , (c) relative growth rate of the infected number density  at ,  days,
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4. EXAMPLES OF NUMERICAL SOLUTIONS
4.1. Solutions with 

For numerical analysis, Eq. (4) was solved using the Euler method with a step of 1 day. Figure 1 shows
numerical solutions for the “free f light” situation, when . This example can illustrate the pol-
icy of full immunization of the society because of its total infection. The initial conditions are chosen to
equal one millionth of the population (320 for the USA, 140 for Russia, 12 for Moscow, 2.5 for Almaty,
etc.). The infection time was taken 14 days, although it may be more reasonable to take 20–30 days.

As a result, the pandemic lasts about 100 days, the peak of morbidity falls on 80–90 days and reaches
40 individuals per 1000 population. Since there are no such number of hospital beds anywhere (according
to the WHO [14] website, the number of hospital beds does not exceed 8 per 1000 population even for
developed countries), a large number of denials in medical care (and, therefore, multiple lethal outcomes)
accompanies this scheme. It is interesting that the relative increment is accompanied by a jump, when on
the 14-th day the dependence switches from solution (7) to solution (9), i.e., by a small difference of 
from  (see above about the discontinuity of derivatives at this point).

Note that at , Eq. (14) yields the infection peak at , i.e., according to Fig. 1a, on the
86-th day of epidemic development. This conclusion is confirmed by Fig. 1b, where the peak occurs on
the 82-th day.

4.2. Solutions with 
To demonstrate the regime of pandemic fading away at , when a unique solution  of

Eq. (10) exists, we present Fig. 2 illustrating the solution of Eq. (4) at ,  days, i.e.,
. The initial value was chosen , i.e., 10 times greater than for the calculations

shown in Fig. 1. This was done for the convenience of the analysis, since the growth of the number of
infected individuals is small. The growth of the number of infected individuals is seen to tend to a constant
(nearly 3.5 times) not achieving unity. In other words, it is possible to stop pandemic without total infec-
tion of the population. For this purpose, the product  must be less than one, as discussed above. In this
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Fig. 3. Numerical solutions  of Eq. (5) and their derivatives  versus  measured in the units of  at differ-
ent values of : 0.5, 0.9, 0.99, 1.01, 1.1, 1.5, 2, 3, 5.
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regime, the derivative has a noticeable jump, since  and  differ considerably. For this example, the pan-
demic lasts nearly 100 days, which is close to the example shown in Fig. 1. It is an accidental coincidence.
Choosing a greater probability of infection, e.g., , we get significantly longer time of pandemic
development (about 1500 days) in the  regime. The number of infected individuals in this case
increases by nearly 50 times, i.e., the solution will again tend to a constant different from 1, but during
much longer time.

4.3. Dependence of Solutions on the Parameter 

The considered examples of numerical solutions do not contradict the analysis of Eq. (4) in linear
approximation. Moreover, they confirm the basic conclusions. However, it is still unclear how the solu-
tion goes to a constant at large times for . In this case, it is impossible to use the linear approxima-
tion for the analysis, and numerical approach should be applied. Since Eq. (5) depends on the only
parameter , below we present numerical solutions at different values of this constant. The correct
scheme of displaying the density of infected individuals as a function of the variable  is not demonstra-
tive, so below we use the time axis in days with  days. For other values of  the quantity  is a
scaling factor. For example, 100 days at  will become 200 days at . In all calculations,

.
Figure 3 illustrates the kinetics of infection density and its derivative with respect to time  at different

values of . As seen from Fig. 3a, in the case of , namely, at , the pandemic
stops at small amount of infected individuals (not exceeding 0.01% of the population) but the time of its
development is rather long and increases as  approaches 1. For large  = 1.5, 2, 3, 5 the fraction of
infected population changes from 60 to 100% during rather short times of infection development.
Figure 3 also presents solutions at  slightly exceeding 1. Thus, at  the solution becomes stabi-
lized at a constant level during a long time (years). At  the time of achieving a plateau is shorter,
but the proportion of infected will amount to 18%. From Fig. 3b it is seen that at  the derivative

 increases in a certain interval at , which is not the case at . Note that to date1 the number
of infected individuals in Russia is 0.13%, in Germany 0.20% in the USA 0.36%, i.e., in these countries
the  scenario takes place.

4.4. Epidemic Waves

The above reasoning shows that for a given constant , the peak of the disease is determined by
Eq. (13), and is the only one. However, if the parameter  can be controlled, two or even three peaks can
be observed. To demonstrate this statement, we introduce a control of the parameter  with a sharp
change in its value:

(18)

To choose the value of , one can rely on the values of the effective constant , which must be
greater than 1, and the asymptotic value of , e.g., from Fig. 3, at . Figure 4 illustrates the calcu-

1 The paper was prepared in May, 2020. The currents statistics of COVID-19 for later periods (see, e.g., [15, 16]) qualitatively
agrees with our prognosis.
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Fig. 4. Absolute growth rate  of the infected number density versus time  measured in the units of : (a) for

 days and , (b) for  days and , (c) for

 days and  , ,  days, .
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lations with the appearance of two or even three peaks. It can be seen that for the selected value of  near
1, a small jump in  by 20% (Figs. 4a, 4b) leads to the appearance of a second peak (Fig. 4b), and in order
for them to be observed, the switching time of the parameter  is  days (compare Figs. 4a, 4b).
For the third peak to appear, the jump in  must be greater. In the given example (Fig. 4c),  increases
by 3 times.

The choice of the transition function in the form (18) is rather arbitrary, and it is possible to study func-
tions with a faster degree of switching of the value of , thus compressing the time scale for the emer-
gence of new peaks of the disease. It is for this behavior that society’s response to the pandemic is respon-
sible.

Thus, the answer to the question of whether we can expect two or more peaks in the rates of the disease
can be formulated so: “The number of peaks can reach at least three, and is determined by the amplitude
and rate of change in the parameter α”.

4.5. Infection Transport

Considering the development of a pandemic within the framework of Eqs. (4)–(5), i.e., within the
scheme “an infected patient charges others”, we did not take into account the influx of infected patients
from the outside. While for large communities, this growth mechanism of infected number may turn out
to be insignificant, for small cities the influx of ill individuals from outside can have a significant impact
on the dynamics of infection development. In order to include the f low of infected in Eqs. (4) or (5), one

can simply add the term  to the derivative :

(19)

where  is the relative number of infected individuals arriving at the community per unit time, e.g., per
day. Generally, the f lux of infected individuals  is a function of time and can be easily changed due to
social efforts up to complete isolation ( ).

When considering the infection development with Eq. (19), the initial condition  can be zero,
if we remove the discontinuity of derivative at  mentioned above. The schemes used for analyzing
Eq. (4) are also applicable to Eq. (19). Instead of repeating them, we present an example of a numerical
solution of Eq. (19), displayed in Fig. 5 at relatively small values of  and . The chosen value 
means that one infected individual arrives at a city with a population of 100000 during 10 days. As seen
from Fig. 5, even such insignificant inflow of infected individuals leads to a burst of infection that develops
faster than when the initial number of infected individuals is set. This can be seen from comparison of
Fig. 5 with the curve for  in Fig. 3a.

A characteristic feature of the dynamics of diseases in the case of an external influx of infection carriers
is an “extending tail”, which, in principle, allows seeing the source of diseases in the external influx of car-
riers of the infection.
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Fig. 5. (a) Infected number density  versus time  measured in the units of , and (b) the absolute growth rate 

of the infected number density at ,  days, , .
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5. COMPARISON OF THE CURRENT MODEL WITH THE SIR MODEL
As noted above, the Spanish f lu pandemic provoked the need to create a pandemic forecast based on,

albeit simplified, but mathematical models. In particular, it was then that the still used SIR model was cre-
ated [5]. At present, this model has been significantly expanded, but its equations are still basic, and it is
with them that we will compare the present model.

The model name is an abbreviation for three model variables: —Susceptible (the number of people
who can become infected), —Infectious (the number of carriers of the infection), R—removed (the
number of people not able to become infected (immune or dead)). The system of differential equations,
dating back to [5], is written in the form:

(20)

(21)

(22)

Here,  is the number of population members,  and  are the model parameters. The system of equa-
tions (20)–(22) preserves the total number of population members in time, i.e., . To
compare our model with the SIR model, let us express the SIR variables in our notation. Thus, our 
is the number of infected, then , , . Substituting thus
expressed variables , , and  into Eqs. (20)–(22) we get:

(23)

(24)

(25)

Evidently, Eq. (23) is exactly Eq. (3) of our model, and when using densities, Eq. (4). Equation (24) with
Eq. (25) taken into account also yields Eq. (3). Since Eq. (3) and following from it Eqs. (4) and (5) have
unique solutions, formally Eqs. (22) and (25) serve only to relate parameters  and . Naturally,
parameter  can in this case be a function of time, which does not contradict neither the SIR model, nor

the condition .
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Thus, the equation of our model does not contradict the SIR model, being its implementation with
a functional relationship between the numbers of ill individuals and carriers of infection

.

6. ANALYSIS OF THE CURRENT SITUATION

Now it is accepted that the COVID-19 antibodies appear in virtually all patients in 20–24 days after
infection. Therefore, in this analysis we assume the infection time  to be 21 days in a society, where the
anti-infection measures do not allow its radical reduction (“free regime”). With the assumed probability
of contamination in the (self) isolation regime , we get , which yields (see Fig. 3
for ) the time of population infection of about 150 days with the natural pandemic (February-
June) termination in late June–July 2020 in virtually all countries after the first infective episode in China.
If the community will manage to reduce the infection time  by 2–3 times, the duration of pandemic will
increase to a few years with a “bonus” of lower number of ill individuals.

Naturally, the protection measures aimed at reducing  will make it necessary to solve Eqs. (4) with
variable , and the presented numerical solutions will not represent the situation to the full extent. In this
case, for the aim of prognosis one can solve the equations “at the current moment of time”. To do so, the
knowledge of  at the current time is necessary. Note that due to the social measures the values of 
became closer to 1, and the observed increase of the number of infected individuals is determined by the
parameter , i.e., the solution of Eq. (10). For  approaching 1, it is possible to point out a linear relation
between these parameters

(26)

For example, in the USA, where the number of infected individuals achieved 0.4% (16.05.2020) the daily
increment amounts to about 2%. For  days . In the pandemic development mode, accord-
ing to Fig. 3 for , the duration of pandemic is expected to be not less than a year. If the low
increment of infection is due to the pandemic termination, the number of infected individuals should be
much beyond the official statistics. In fact, the choice of pandemic development scenarios is rather lim-
ited: either the major part of the population is already infected (beyond the official statistics), or the pan-
demic will last a year or more.

Figure 6 presents the data from Wikipedia on the number of COVID-19-infected people in Moscow
and the parameter  calculated based on these data according to Eq. (2):

(27)

at  days. From Fig. 6 it is seen that until mid-May  decreases, which is due to both the gradual
introduction of restrictions and the understanding of the situation by the citizens. A jump of  near
May 1 is caused by the fact that on April 15 checking passes at the entrance to the Moscow metro accu-
mulated crowds of people, which gave favorable conditions for the spread of the virus. Beginning from the
mid-May till the end of June  becomes constant, and there is a decrease in the daily incre-
ment in the number of infected individuals. In mid-June the restrictions in Moscow are gradually
removed, and in the first two decades of July a growth of  is observed. From the end of July till mid-
August  and the daily increment of the infected people number amounts to about 700, how-
ever, using these data for modeling yields a pessimistic result: by the end of the year, the daily increase will
exceed 1000 people, and the number of cases will be 350000.

Relatively even distribution of infected people in Moscow by the beginning of the epidemic and the
slow propagation, when a person infected at one end of Moscow can infect other people at another end,
as well as regulations (laws) that do not depend on a particular district of Moscow, make it possible to
neglect the focality and consider the entire metropolis as one population. A large number of patients min-
imize the probabilistic component of the error, which can be seen in the Figs. 6, 7, where the amplitude
of rapid f luctuations in the daily increase in patients and the product  decrease with time.

For illustration, Fig. 7 presents the model parameter  with  and the forecast
of the number and daily increase of infected, obtained using the average value of  from July 31st
to August 13th. For all , there is an increase in the daily increase in infected. Moreover, for , the
jump of  in the vicinity of May 1 becomes inexplicable.
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Fig. 6. (a) The number of individuals infected by COVID-19 , (b) the daily increment of infected people number
 from March 2 to August 13 in Moscow (according to the data available from Wikipedia), (c) time dependence of

the parameter  from April 1 to August 13 with  days.
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Fig. 7. (a) Time dependence of parameter  from April 1 to August 13 for Moscow with  days;
(b) number of infected people , and (c) daily increment of the infected people number , obtained by extrapo-
lating to 2021–2024.
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7. CONCLUSION. DRAWBACKS OF THE MODEL
The proposed two-parameter model of the development of infection in the form of an ordinary non-

linear differential equation of the first order with retarded time argument is actually a reduced SIR model
with a functional relationship between patients and carriers of the infection . This
reduction maintains an optimal balance between the adequacy of describing a pandemic in the SIR model
and the simplicity of practical estimates. In this case, the proposed model allows solving both the direct
problem, i.e., for given parameters  and  find the dependence of the density of infected  on time ,
and the inverse problem, i.e., for a given dependence of the density of infected on time, determine the
dependence of the model parameters on time. This makes it possible to quickly predict the development
of infection based on previous information on the statistics of the disease (see Fig. 7).

Note that for a given constant  the peak of the disease is determined by Eq. (13) and is unique. How-
ever, with the possibility of a sharp change in the parameter , two or even three peaks can appear, as
shown in Fig. 4. Such a change in  due to varying  may be related to a seasonal dependence of suscep-
tibility to disease or depend on the number of contacts on weekdays, holidays, and vacations. In particular,
for Russia, the minimum value of  fell on the spring and summer holidays and can be expected during
the autumn and winter vacations. Changes in the value of  due to the parameter  are largely deter-
mined by the reaction of society to the disease. Thus, the answer to the question whether we can expect
two or more peaks in disease rate can be formulated so: “The number of peaks can reach at least three,
and is determined by the amplitude and rate of change of the parameter ”. Current information con-
firming the multi-peak spread of COVID-19 in megalopolises is presented, e.g., in the messages of RIA
Novosti [17].

Considering the development of a pandemic in the framework of Eqs. (4), (5), that is, in the scheme
“an infected patient infects others”, we did not take into account the influx of infected persons from the
outside. While for large communities this mechanism may turn out to be insignificant, for small cities the
influx of patients from the outside can have a significant impact on the dynamics of the infection devel-
opment. In order to include the f low of infected in Eqs. (4) or (5), it is enough to add the term  (the rel-
ative proportion of infected patients arriving in the community per unit of time) to the derivative  and
as a result get the inhomogeneous equation (19). In the general case, the f low of infected patients  is a
function of time  and can be easily changed by the efforts of society, up to complete isolation ( ). Fig-
ure 5 shows that even a small influx of infected people leads to a disease outbreak that proceeds faster than
when imposing the initial condition on the number of patients.
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A drawback of the model is description in average. Examples of incorrectness of such a description can
manifest themselves in small societies, where the external feeding of infection can play a more important
role than the mechanisms of development described by Eq. (4). Besides, the description is independent
of coordinates, i.e., does not reflect the spatial distribution of the infection over a territory. Therefore, the
subsequent infection bursts due to the leveling of the infected density over regions are beyond the model.
The rest drawbacks related to the number of model parameters (e.g., division of population into groups,
each having its own value of ), seem to be of minor importance for the description of population in
whole. An essential feature of COVID-19 that makes it a somewhat unique among other infections is that
the severity of disease strongly differs in individual patients from easy to mortal outcome. Moreover, in the
course of the disease development there is a singular (bifurcation-like) point at which the fatal lung com-
plications unexpectedly occur in some patients. These features are of great practical significance since the
easy cases strongly underestimate the statistics (the patients do not seek medical aid and are not taken into
account), while the potentially dangerous cases need special immediate care. In the present simplified
model, these features, the nature of which is still far from clear [18] were not included. A challenge for
future studies is to remove the above drawbacks striving to maintain the optimal balance between model
adequacy and simplicity for practical evaluations.
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