Skip to main content
Log in

Plume Magmatism at Franz Josef Land

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

The morphological types of geological sections, newly acquired 40Ar/39Ar isotope dates, and geochemical and mineralogical data on Jurassic–Cretaceous basaltic rocks at Franz Josef Land indicate that plume magmatism evolved in this archipelago in two episodes. The Jurassic episode (at 192 ± 3 Ma) was marked by eruptions only of low-K tholeiites. The lava flows of this stage are characterized by combination of textures of two types in their flows: colonnade large-prismatic (in the bottom portions of the flows) and randomly oriented faned small-prismatic parting (in the tops of the flows). During the Late Jurassic–Cretaceous episode (at 157 ± 3 Ma, 132 ± 1 Ma, and 115 ± 1 Ma), low-K tholeiites were erupted together with subalkaline tholeiites, which compose flows, most of the sills, and all the dykes we studied in the archipelago. The lava flows of this episode typically have only columnar and block parting structures. The episodes of magmatic activity well correlate with episodes of continental sedimentation on the archipelago and are separated from one another with an episode of marine transgression in the Middle Jurassic. The volcanics of the low-K series typically bear relatively low concentrations of TiO2 (≤2 wt %) and MgO (mostly 5–6 wt %), low K2O concentrations (≤0.3 wt %), and weakly fractionated REE patterns (Lan/Ybn = 2.11–2.30). The rocks of the subalkaline series are richer in K2O (0.7–1.2 wt %), TiO2, HFSE, and LILE and have fractionated REE patterns (Lan/Ybn = 3.85–4.45). The mineralogical composition of the rocks of both series is practically exactly similar. The rocks are dominated by pyroxene and plagioclase and contain subordinate amounts of olivine, titanomagnetite, and ilmenite. The pyroxenes are augite (XCa = 0.32–0.42), and the low-K tholeiites contain two pyroxenes: augite and subcalcic augite (XCa = 0.12–0.25). The Early Cretaceous low-K tholeiites contain PGE minerals (of the Au–Cu–Pd type): cuproauride Au(Cu, Pd), auricuprite Au(Cu, Pd)3, and compounds close to skaergaardite PdCu and nilsenite PdCu3. It is interesting that the volcanic rocks of both Early Cretaceous series contain magmatic siderite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 6.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

REFERENCES

  1. Abashev, V.V., Metelkin, D.V., Mikhaltsov, N.E., Vernikovsky, V.A., and Bragin, V.Yu., Paleomagnetism of traps of the Franz Josef Land Archipelago, Russ. Geol. Geophys., 2018, vol. 59, pp. 1161–1181.

    Article  Google Scholar 

  2. Amundsen, H., Evdokimov, A., Dibner, V.D., and Andresen, A., Geochemistry and petrogenetic significance of mesozoic magmatism on Franz Josef Land, northeastern Barents Sea, in Geological Aspects of Franz Josef Land and the Northernmost Barents Sea. The Barents Sea Geotraverse, Solheim, A., Musatov, E., and Heintz, N., Eds., Norsk Polarinstitutt Meddelelser, 1998, vol. 151, pp. 105–120.

  3. Arndt, N.T., Czamanske, G.K., Wooden, J.L., and Fedorenko, V.A., Mantle and crustal contribution to continental flood volcanism, Tectonophysics, 1993, vol. 223, pp. 39–52.

    Article  Google Scholar 

  4. Baksi, A.K., Archibald, D.A., and Farrar, E., Intercalibration of 40Ar/39Ar dating standarts, Chem. Geol., 1996, vol. 129, pp. 307–324.

    Article  Google Scholar 

  5. Campsie, J., Rasmussen, M.H., Hansen, N., Liebe, C.J., Laursen, J., Brochwicz-Levinski, W., and Johnson, L., K‑Ar ages of basaltic rocks collected during a traverse of the Frans Josef Land archipelago (1895–1896), Polar Res., 1988, no. 6, pp. 173–177.

  6. Chernysheva, E.A., Kharin, G.S., and Stolbov, N.M., Basaltic magmatism in arctic seas related to the Mesozoic activity of the Iceland plume, Petrology, 2005, vol. 13, no. 3, pp. 289–304.

    Google Scholar 

  7. Corfu, F., Polteau, S., Planke, S., Faleide, J.I., Zayoncheck, A., and Stolbov, N., U-Pb geochronology of Cretaceous magmatism on Svalbard and Franz Josef Land, Barents Sea large igneous province, Geol. Mag., 2013, vol. 150, no. 6, pp. 1127–1135.

    Article  Google Scholar 

  8. Dibner, V.D., Barents Sea islands, Geologiya SSSR (Geology of the USSR), Moscow: Nedra, 1970, vol. 26, pp. 60–108.

    Google Scholar 

  9. Dibner, V.D., Geology of Franz Josef Land, Norsk Polarinstitutt. Mtddelelser, 1998, no. 146.

  10. Dobretsov, N.L., Vernikovsky, V.A., Simonov, V.A., Karyakin, Y.V., and Korago, E.A., Mesozoic–Cenozoic volcanism and geodynamic events in the central and eastern arctic, Russ. Geol. Geophys., 2013, vol. 54, no. 8, pp. 874–887.

    Article  Google Scholar 

  11. Dodson, M.H., Closure temperature in cooling geochronological and petrological systems, Contrib. Mineral. Petrol., 1973, vol. 40, pp. 259–274.

    Article  Google Scholar 

  12. Ernst, R.E., Large Igneous Provinces, Cambridge: Cambridge University Press, 2014.

    Book  Google Scholar 

  13. Estrada, S., Damaske, D., Henjes-Kunst, F., Schreckenberger, B., Oakey, G.N., Piepjohn, K., and Linnemannn, U., Multistage cretaceous magmatism in the northern coastal region of Ellesmere Island and its relation to the formation of Alpha Ridge—evidence from aeromagnetic, geochemical and geochronological data, Norw. J. Geol., 2016, vol. 96, no. 2, pp. 65–95.

    Google Scholar 

  14. Geptner, A.R., Characteristic features of some genetic types of continental sediments of volcanic areas, Protsessy kontinental’nogo litogeneza (Processes of Continental Lithogenesis), Moscow: Nauka, 1980, pp. 94–122.

    Google Scholar 

  15. Geptner, A.R., Environmental influence on the formation of basaltic volcanoes of Iceland, Tr. III Vserossiiskogo simpoziuma po vulkanologii i paleovulkanologii “Vulkanizm i geodinamika” (Proc. 3rd All-Russian Symposium on Volcanology and Paleovolcanology), Ulan-Ude: Izd-vo Buryatskogo NTs SO RAN, 2006, pp. 632–634.

  16. Giletti, B., Studies in diffusion 1: Ar in phlogopite mica, Geochemical Transport and Kinetics. Eds. Hofmann, A., Giletti, V., Yoder, H.S., Yund, R.A., Eds., Carnegie Inst. Wash. Publ., 1974, pp. 107–115.

  17. Grachev, A.F., A new view on the origin of magmatism of the Franz Josef Land, Izv. Phys. Solid Earth, 2001, vol. 37, no. 9, pp. 744–756.

    Google Scholar 

  18. Grachev, A.F., Arakelyantz, M.M., Lebedev, V.A., Musatov, E.E., and Stolbov, N.M., New K-Ar ages for basalts from Franz Josef Land, Russ. J. Earth Sci., 2001, vol. 3, no. 1, pp. 79–82.

    Article  Google Scholar 

  19. Hodges, K.V., Geochronology and Thermochronology in Orogenic Systems. Treasure on Geochemistry, Oxford: Elsevier, 2004, pp. 263–292.

    Google Scholar 

  20. Il’ina, V.I., Dinocyst stratigraphy of the Bathonian–Oxfordian sediments on the Russian Platform, Stratigrafiya i paleogeografiya osadochnykh tolshch neftegazonosnykh basseinov SSSR (Stratigraphy and Paleogeography of Sedimentary Sequences of Petroleum Basins of the USSR), Kirichkova, A.I. and Chirva, S.A, Eds., Leningrad: VNIGRI, 1991, pp. 42–64.

  21. Il’ina, V.I., Palynology of South Siberia, Tr. IGiG SO AN SSSR, 1995, vol. 638.

  22. Irvine, T.N. and Baragar, W.R.A., A guide to the chemical classification of the common volcanic rocks, Can. J. Earth Sci., 1971, vol. 8, pp. 523–548.

    Article  Google Scholar 

  23. Johnson, G.L. and Rich, J.E., A 30 million year cycle in arctic volcanism?, J. Geodynamics, 1986, vol. 6, nos 1–4, pp. 111–116.

    Article  Google Scholar 

  24. Jowitt, S.M., Williamson, M.C., and Ernst, R.E., Geochemistry of the 130 to 80 Ma Canadian High Arctic large igneous province (HALIP) event and implications for Ni–Cu–PGE prospectivity, Econ. Geol., 2014, vol. 109, pp. 281–307.

    Article  Google Scholar 

  25. Karyakin, Yu.V., Geological structure of the Tikhaya Bight coast (Guker Island, Franz Josev Land Archipelago). Answer to publications by N.M. Stolbov and E.B. Suvorova “On time of the formation of the plateaubasalt area of the Franz Josef Land: geological data,” Tektonika, geodinamika i rudogenez skladchatykh poyasov i platform. Materialy XLVIII Tektonicheskogo soveshchaniya (Tectonics, Geodynamics, and Ore Genesis of Fold Belts and Platforms. Proc. 48th Tectonic Conference), Moscow: GEOS, 2016, vol. 1, pp. 225–232.

  26. Karyakin, Yu.V. and Shipilov, E.V., Geochemical specifics and 40Ar/39Ar age of the basaltoid magmatism of the Alexander Land, Northbrook, Hooker, and Hayes islands (Franz Josef Land Archipelago), Dokl. Earth Sci., 2009, vol. 425, no. 2, pp. 260–263.

    Article  Google Scholar 

  27. Karyakin, Yu.V., Lyapunov, S.M., Simonov, V.A., Sklyarov, E.V., Travin, A.V., and Shipilov, E.V., Mesozoic magmatic complexes of the Franz Josev Land Archipelago, Geologiya polyarnykh oblastei Zemli (Geology of the Polar Regions of the Earth), Moscow: GEOS, 2009, vol. 1, pp. 257–263.

    Google Scholar 

  28. Karyakin, Yu.V., Simonov, V.A., Sklyarov, E.V., Travin, A.V., Shipilov, E.V., and Kovyazin, S.V., Mantle plume episodes of the Archpelago Franz Joseph Land, Large Igneous Provinces, Mantle Plumes and Metallogeny. Abstracts of the International Symposium, Novosibirsk: Sibprint, 2009, pp. 144–146.

  29. Karyakin, Yu.V., Sklyarov, E.V., Travin, A.V., and Shipilov, E.V., Age and composition of basalts of the central and southwestern parts of the Franz Josef Land archipelago, Tektonika i geodinamika skladchatykh poyasov i platform fanerozoya (Tectonics and Geodynamics of the Phanerozoic Fold Belts and Platforms), Moscow: GEOS, 2010, vol. 1, pp. 293–301.

    Google Scholar 

  30. Karyakin, Yu.V., Shipilov, E.V., Simonov, V.A., Sklyarov, E.V., and Travin, A.V., Phases and stages of the plume magmatism in the Franz-Josef Land Archipelago, Large Igneous Provinces of Asia. Abstracts of the International Symposium, Irkutsk, 2011, pp. 96–98.

  31. Kharin, G.S Magmatic pulses of the Iceland plume, Petrology, 2000, vol. 8, no. 2, pp. 97–112.

    Google Scholar 

  32. Komarnitskii, V.M. and Shipilov, E.V., New geological data on magmatism of the Barents Sea, Dokl. Akad. Nauk SSSR, 1991, vol. 320, no. 5, pp. 1203–1206.

    Google Scholar 

  33. Kosteva, N.N., Stratigraphy of the Jurassic–Cretaceous Deposits of the Fanz Josef Land Archipelago, Arktika i Antarktika (Arctica and Antarctica), Moscow: Nauka, 2005, vol. 4, no. 38, pp. 16–32.

  34. Levskii, L.K., Bogomolov, E.S., Stolbov, N.M., Vasil’eva, I.M., and Makar’eva, E.M., Sr-Nd-Pb isotopic systems in basalts of the Franz Josef Land Archipelago, Geochem. Int., 2006, vol. 44, no. 4, pp. 327–337.

    Article  Google Scholar 

  35. Makar’ev, A.A., Makar’eva, E.M., and Kosteva, N.N., New data on the geological structure, mineral resources, and geoecology of the Franz Josef Land archipelago, Razv. Okhr. Nedr., 2002, no. 9, pp. 23–27.

  36. McDonald, A.M., Cabri, L.J., Rudashevsky, N.S., Stanley, C.J., Rudashevsky, V.N., and Ross, K.C., Nielsenite, PdCu3, a new platinum-group intermetallic mineral species from the Skaergaard intrusion, Greenland, Can. Mineral., 2008, vol. 46, pp. 709–716.

    Article  Google Scholar 

  37. Minakov, A., Yarushina, V., Faleide, J.I., Krupnova, N., Sakoulina, T., Dergunov, N., and Glebovsky, V., Dyke emplacement and crustal structure within a continental large igneous province, northern Barents Sea, Circum-Arctic Lithosphere Evolution, Pease, V. and Coakley, B., Eds., Geol. Soc. London: Spec. Publ., 2017, vol. 460, pp. 371–395.

  38. Morozova, I.M. and Rublev, A.G., Kalii-argonovye sistemy polimetamorficheskikh porod (Potassium–Argon System of Polymetamorphic Rocks), Shukolyukov, Yu.A, Eds., Moscow: Nauka, 1987, pp. 19–28.

  39. Ntaflos, T. and Richter, W., Geochemical constraints on the origin of the continental flood basalts magmatism in Franz Jozef Land, Arctic Russia, Eur. J. Mineral., 2003, vol. 15, pp. 649–663.

    Article  Google Scholar 

  40. Piskarev, A.L., Heunemann, C.H., Makar’ev, A.A., Makar’eva, E.M., Bachtadze, V., and Aleksyutin, M., Magnetic parameters and variations in the composition of magmatic rocks from the Franz Josef Land Archipelago, Phys. Earth, 2009, no. 2, pp. 66–83.

  41. Repin, Yu.S., Polubotko, I.V., Kirichkova, A.I., and Kulikova, N.K., Sedimentary Mesozoic of the Franz Josef Land Archipelago (FJL), Voprosy stratigrafii, paleontologii i paleogeografii (Problems of Stratigraphy, Paleontology, and Paleogeography), St, Petersburg: St. Petersb. Gos. Univ., 2007, pp. 56–76.

    Google Scholar 

  42. Saemundsson, K., Interglacial lava flows in the lowlands of southern Iceland and the problem of two-tiered columnar jointing, Jökull J., 1970, vol. 20, pp. 62–77.

    Google Scholar 

  43. Senger, K., Tveranger, J., Ogata, K., Braathen, A., and Planke, S., Late Mesozoic magmatism in Svalbard: a review, Earth-Sci. Rev., 2014, vol. 139, pp. 123–144.

    Article  Google Scholar 

  44. Shanin, L.L., Volkov, V.N., Litsarev, M.A., Arakelyants, M.M., Gol’tsman, Yu.V., Ivanenko, V.V., and Bairova, E.D., Kriterii nadezhnosti metodov radiologicheskogo datirovaniya (Criteria for Reliable Methods of Radiological Dating), Borsuk, A.M, Eds., Moscow: Nauka, 1979.

  45. Shipilov, E.V. and Karyakin, Yu.V., The Barents sea magmatic province: geological-geophysical evidence and new 40Ar/39Ar dates, Dokl. Earth Sci., 2011, vol. 439, pp. 955–960.

    Article  Google Scholar 

  46. Simonov, V.A., Karyakin, Yu.V., and Kotlyarov, A.V., Physical and chemical conditions of basaltic magmatism at the Franz Josef Land Archipelago, Geochem. Int., 2019, vol. 57, pp. 761–789.

    Article  Google Scholar 

  47. Sklyarov, E.V., Karyakin, Yu.V., Karmanov, N.S., and Tolstykh, N.D., Platinum-group minerals in dolerites from Alexandra Land Island (Franz Josef Land Archipelago), Russ. Geol. Geophys., 2016, vol. 57, no. 5, pp. 834–841.

    Article  Google Scholar 

  48. Sklyarov, E.V., Karyakin, Yu.V., and Kanakin, S.V., Igneous carbonates in dolerites of Franz Joseph Land, Dokl. Earth Sci., 2017, vol. 472, pp. 109–112.

    Article  Google Scholar 

  49. Solheim, A., Musatov, E., and Heintz, N., Geological evolution and correlation between Franz Josef Land and Svalbard. The Northern Barents Sea Geotraverse: introduction to the project, in Geological Aspects of Franz Josef Land and the Northernmost Barents Sea. The Barents Sea Geotraverse, Solheim, A., Musatov, E., and Heintz, N., Eds., Norsk Polarinstitutt Meddelelser, 1998, vol. 151, pp. 5–9.

  50. Stolbov, N.M., On the age problem of the trap magmatism of the Franz Josef Land Archipelago: Geochronological data, Geologo-geofizicheskie kharakteristiki litosfery Arkticheskogo regiona (Geological-Geophysical Characeristics of Lithosphere of the Arctic Region), St. Petersburg: VNIIOkeangeologiya, 2002, vol. 4, pp. 199–202.

    Google Scholar 

  51. Stolbov, N.M., Magmatism of the Franz Josef Land Archipelago, Geodinamika, magmatizm, sedimentogenez i minerageniya severo-zapada Rossii (Geodynamics, Magmatism. Sedimentation, and Metallogeny of Northwestern Russia), Petrozavodsk, 2007, pp. 383–387.

    Google Scholar 

  52. Sun, S. and McDonough, W.F., Chemical and isotopic systematic of oceanic basalts: implications for mantle composition and processes, Geol. Soc. Spec. Publ., 1989, vol. 42, pp. 313–345.

    Article  Google Scholar 

  53. Tarakhovskii, A.N., Fishman, M.V., Shkola, I.V., and Andreichev, V.L., Age of traps of the Franz Josef Land, Dokl. Akad. Nauk SSSR, 1982, vol. 266, no. 4, pp. 965–969.

    Google Scholar 

  54. Unifitsirovannaya stratigraficheskaya skhema yurskikh otlozhenii Russkoi platformy (Unified Stratigraphic Scheme of Jurassic Deposits of the Russian Platform), Yakovlev, S.P, Eds., St. Petersburg, 1983.

  55. Unifitsirovannaya regional’naya stratigraficheskaya skhema yurskikh otlozhenii Vostochno-Evropeiskoi platform. Ob"yasnitel’naya zapiska (Unified Regional Stratigraphic Scale of Jurassic Deposits of the East European Platform. Explanatory Note). M.: PIN RAN - FGUP “VNIGNI”, 2012.

  56. Valentini, L., Moore, K.R., and Chazot, G., Unravelling carbonatite–silicate magma interaction dynamics: a case study from the Velay Province (Massif Central, France), Lithos, 2010, vol. 116, no. 1, pp. 53–64.

    Article  Google Scholar 

  57. Verba, M.L., Modern bilateral extension of the crust in the Barents–Kara region and its role in assessment of petroleum prospects, Neftegaz. Geol. Teor. Praktika, 2007, vol. 2, pp. 1–37.

    Google Scholar 

  58. Verba, V.V. and Truhalev, A.I., Plume origin of the central arctic uplifts evolution in the Amerasian Basin of the Arctic Ocean, Russia, J. Earth. Sci., 2016, vol. 16, p. ES1002. https://doi.org/10.2205/2016ES000562

    Article  Google Scholar 

  59. Whitney, D.L. and Evans, B.V., Abbreviations for names of rock-forming minerals, Am. Mineral., 2010, vol. 95, no. 1, pp. 185–187.

    Article  Google Scholar 

Download references

Funding

This study was supported by Project VII.54.1.3, the Russian Foundation for Basic Research (project nos. 08-05-00180, 08-05-00733, 18-05-70040, and 18-05-70109), and Project ONZ-10.1. The mineral investigations were funded by the government of the Russian Federation (Project 075-15-2019-1883).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. V. Karyakin, E. V. Sklyarov or A. V. Travin.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karyakin, Y.V., Sklyarov, E.V. & Travin, A.V. Plume Magmatism at Franz Josef Land. Petrology 29, 528–560 (2021). https://doi.org/10.1134/S0869591121050027

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591121050027

Keywords:

Navigation