Skip to main content
Log in

Controlled Neuroplasticity

  • REVIEWS
  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

The paper presents a review of literature data on various aspects of one of the most rapidly developing methods for the treatment of neurological and mental disorders. A definition is proposed for the term “neuromodulation.” Various widely used methods of neuromodulation are described and classified. We propose a hypothesis on the mechanisms of action of various methods of neuromodulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Galanin, I.V., Naryshkin, A.G., Gorelik, A.L., et al., The current state of the problem of neuroplasticity in psychiatry and neurology, Vestn. Sev.-Zapad. Gos. Med. Univ.im.Mechnikova, 2015, vol. 7, no. 1, p. 134.

    Google Scholar 

  2. Spalding, K.L., Bergmann, O., Alkuss, K., et al., Dynamics of hippocampal neurogenesis in adult humans, Cell, 2013, vol. 153, no. 6, p. 1219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhivolupov, S.A., Samartsev, I.N., and Syroezhkin, F.A., Modern concept of neuroplasticity, Zh. Nevropatol. Psikhiatr. im. S.S. Korsakova, 2013, no. 10, p. 102.

  4. Neuroprotection: Models, Mechanisms and Therapies, Bähr, M., Ed., New York: Wiley, 2004.

    Google Scholar 

  5. Gulyaeva, N.V., Aberrant neurogenesis in adult epileptic brain: compensatory or pathologic, Neurochem. J., 2010, vol. 4, no. 2, p. 84.

    Article  Google Scholar 

  6. Naryshkin, A.G., Galanin, I.V., Gorelik, A.L., et al., Chastnye voprosy neiroplastichnosti. Vestibulyarnaya deretseptsiya (Particular Problems of Neuroplasticity. Vestibular Dereception), St. Petersburg: Foliant, 2017, p. 13.

  7. Gulyaeva, N.V., Molecular mechanisms of neuroplasticity: an expanding universe, Biochemistry (Moscow), 2017, vol. 82, no. 3, p. 237.

    CAS  PubMed  Google Scholar 

  8. Markin, S.P., Neuroplasticity as a basis of recovery neurology, Prikl. Inf. Aspekty Med., 2017, vol. 20, no. 2, p. 104.

    Google Scholar 

  9. Tishkina, A.O., Stepanichev, M.Yu., Aniol, V.A., and Gulyaeva, N.V., Functions of microglia in the halthy brain: focus on neuroplasticity, Usp. Fiziol. Nauk, 2014, vol. 45, no. 4, p. 3.

    CAS  PubMed  Google Scholar 

  10. Buzaki, G., Rhythm Soft the Brain, Oxford: Oxford Univ. Press, 2006, p. 72.

    Book  Google Scholar 

  11. Xie, I., Kang, H., Xu, Q., et al., Sleep drives metabolite clear a cells from the adult brain, Science, 2013, vol. 342, no. 6156, p. 373.

    Article  CAS  PubMed  Google Scholar 

  12. Shabalov, V.A. and Isagulyan, E.D., Neuromodulation: modern approaches to pain surgery, Tikhookean. Med. Zh., 2008, no. 1, p. 16.

  13. Dekopov, A.V., Tomskii, A.A., Shabalov, V.A., et al., Klinicheskie rekomendatsii po neirokhirurgicheskomu lecheniyu detskogo tserebral’nogo paralicha (Clinical Recommendations for Neurosurgical Treatment of Child Cerebral Palsy), Moscow, 2015.

    Google Scholar 

  14. Belova, A.N. and Baldova, S.N., Neuromodulation and spinal spasticity, Trudnyi Patsient, 2013, vol. 11, no. 12, p. 33.

    Google Scholar 

  15. Ninel’, V.G., Smol’kin, A.A., Korshunova, G.A., et al., Neuromodulation in the treatment of spastic syndrome and its role in the complex rehabilitation of patients after injuries of spine and spinal cord, Khir. Pozvonochnika, 2016, vol. 13, no. 1, p. 15.

    Google Scholar 

  16. Tsimbalyuk, V.I., Tret’yak, I.B., Luzan, B.N., and D-zyan Khao, Use of prolonged electrical stimulation to eliminate pain in thoracic outlet syndrome, Ukr. Neirokhir. Zh., 2016, no. 3, p. 28.

  17. Dekopov, A.V., Shabalov V.A., Tomsky A.A., et al., Chronic spinal cord stimulation in the treatment of cerebral and spinal spasticity, Stereotact. Funct. Neurosurg., 2015, vol. 93, p. 133.

    Article  PubMed  Google Scholar 

  18. Wenger, N., Mozaud, E.M., and Curtine, G., Spatiotemporal neuromodulation therapy esen gaging muscles energies improve motor control after spinal cord injury, Nat. Med., 2016, vol. 22, p. 138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tisi, G., Franzini, A., Messina, G., et al., Vagus nerve stimulation therapy in treatment-resistant depression: a series report, Psychiatry Clin. Neurosci., 2014, vol. 68, no. 8, p. 606.

    Article  PubMed  Google Scholar 

  20. Alexopoulos, A.V., Kotagal, P., Loddenkemper, T., et al., Long-term results with vagus nerve stimulation in children with pharmacoresistant epilepsy, Seizure, 2006, vol. 15, p. 491.

    Article  PubMed  Google Scholar 

  21. Biggio, F., Gorini, G., Utzeri, C., et al., Chronic vagus nerve stimulation in dues neuronal plasticity in the rat hippocampus, Neuropsychopharmacology, 2009, vol. 9, no. 12, p. 1209.

    Article  Google Scholar 

  22. Skoromets, T.A., Galanin, I.V., Naryshkin, A.G., et al., The first Russian experience with the use of vagus nerve stimulation in the treatment of resistant prolonged depressions, Obozr. Psikhiatr. Med. Psikhol. im. V.M. Bekhtereva, 2017, no. 2, p. 104.

  23. Lipatova, L.V., Skoromets, T.A., Gromov, S.A., et al., Use of vagus nerve stimulation in the treatment of pharmacoresistant epilepsy, Zh. Nevrol., Psikhiatr., Psikhosomatika, 2014, no. 1, p. 18.

  24. Isagulyan, E.D., Osipova, V.V., Ekusheva, E.V., et al., Neuromodulation in the treatment of cluster headache, Ross. Med. Zh., 2017, vol. 25, no. 24, p. 1779.

    Google Scholar 

  25. Amara, A.W., Watts, R.L., and Walker, H.C., The effects of deep brain stimulation on sleep in Parkinson’s disease, Adv. Neurol. Disord., 2011, vol. 4, p. 15.

    Article  Google Scholar 

  26. Tsukarzi, E.E., Modern methods of brain stimulation: achievements and prospective use, Sots. Klin. Psikhiatr., 2013, vol. 23, no. 1, p. 93.

    Google Scholar 

  27. Krasakov, I.V., Litvinenko, I.V., and Tikho-mirova, O.V., Disruption of the REM phase against the background of deep brain stimulation in Parkinson’s disease, Vestn. Ross. Voen.-Med. Akad., 2015, vol. 52, no. 4, p. 47.

    Google Scholar 

  28. Smith, D.F., Exploratory meta-analysis on deep brain stimulation in treatment-resistant depression, Acta Neuropsychiatrica., 2014, vol. 26, no. 6, p. 382.

    Article  PubMed  Google Scholar 

  29. Bikmullin, T.A., Levin, M.S., Bariev, Z.R., and Khakimova, F.N., Treatment of patients after use of a baclofen pump, Prakt. Med., 2017, vol. 1, no. 1 (102), p. 96.

  30. Kandel’, E.I., Funktsional’naya i stereotaksicheskaya khirurgiya (Functional and Stereotactic Neurosurgery), Moscow: Meditsina, 1981.

  31. Higuchi, Y., Matsuda, S., and Serizawa, T., Gamma knife radiosurgery in movement disorders: Indications and limitations, Mov. Disord., 2017, vol. 32, p. 28.

    Article  PubMed  Google Scholar 

  32. Tyurikov, V.M. and Gushcha, A.O., High intensity focused ultrasound in functional neurosurgery, Tekhnologii, 2016, vol. 10, no. 4, p. 52.

    Google Scholar 

  33. Oleneva, E.V., Tsukarzi, E.E., and Mosolov, S.N., Forecast of the effective use of electroconvulsive therapy in patients with schizophrenia resistant to pharmacotherapy and difficulties in using the PANSS scale, Obozr. Psikhiatr. Med. Psikhol. im. V.M. Bekhtereva, 2009, no. 4, p. 42.

  34. Egorov, A.Yu., Mosolov, S.N., and Tsukarzi, E.E., Electroconvulsive therapy, in Psikhiatriya. Natsional’noe rukovodstvo (Psychiatry: National Guide), Aleksandrovskii, Yu.A. and Neznanova, N.G., Eds., Moscow: GEOTAR-Media, 2018, p. 953.

  35. Nel’son, A.A., Elektrosudorozhnaya terapiya v psikhiatrii, narkologii i nevrologii (Electroconvulsive Therapy in Psychiatry, Narcology, and Neurology), Moscow: Binom. Laboratoriya Znanii, 2005.

  36. Sackeim, H.A. and George, M.S., Brain stimulation—basic, translational and clinical research in neuromodulation: Why a new journal? Brain Stimul., 2008, vol. 1, no. 1, p. 4.

    Article  PubMed  Google Scholar 

  37. Donenko, V.E., Kuznetsov, A.V., and Raigorodskii, Yu.M., The use of electroconvulsive therapy and plasmapheresis in resistant states in psychiatry, Fizioter., Bal’neol. Reabil., 2014, no. 4, p. 46.

  38. Mosolov, S.N., Tsukarzi, E.E., Gorelik, A.L., and Naryshkin, A.G., Transcranial magnetic stimulation, in Psikhiatriya. Natsional’noe rukovodstvo (Psychiatry: National Guide), Aleksandrovskii, Yu.A. and Neznanova, N.G., Eds., Moscow: GEOTAR-Media, 2018, p. 963.

  39. Iznak, A.F., Iznak, E.V., Damyanovich, E.V., et al., Transcranial magnetic stimulation in combined treatment of pharmacoresistant depression: dynamics of clinical, psychological, and EEG parameters, Hum. Physiol., 2015, vol. 41, no. 5, p. 503.

    Article  CAS  Google Scholar 

  40. Voropaev, A.A. and Rachin, A.P., The effective non-invasive neuromodulation in combination with lornoxicam in the acute period of traumatic brain injury, Ross. Med. Zh., 2017, no. 4, p. 1.

  41. Chervyakov, A.V., Poidasheva, A.G., Korzhova, Yu.E., et al., Rhythmic transcranial magnetic stimulation in neurology and psychiatry, Zh. Nevropatol. Psikhiatr. im. S.S. Korsakova, 2015, no. 12, p. 7.

  42. Chervyakov, A.V., Piradov, M.A., Savitskaya, N.G., et al., New step to personal medicine: NBS eXimia Nexstim navigation system of transcranial magnetic stimulation, Tekhnologii, 2012, vol. 6, no. 3, p. 37.

    Google Scholar 

  43. Shelyakin, A.M. and Ponomarenko, G.N., Mikropo-lyarizatsiya mozga. Tepreticheskie i prakticheskie aspekty (Brain Micropolarization: Theory and Practice), Bogdanov, O.V., Ed., St. Petersburg: Baltika, 2006.

    Google Scholar 

  44. Pinchuk, D.Yu., Transkranial’nye mikropolyarizatsii golovnogo mozga: klinika, fiziologiya (Transcranial Micropolarization of Brain: Clinics and Physiology), St. Petersburg: Chelovek, 2007.

  45. Kuznetsova, E.A., Delayed speech development: neurophysiological approach, Vrach, 2017, no. 8, p. 47.

  46. Gorelik, A.L., Naryshkin, A.G., Skoromets, T.A., et al., The use of transcranial micropolarization in the complex treatment of traumatic brain injury, Zh. Nevrol.im.B.M. Man’kovskogo, 2016, vol. 4, no. 1, p. 50.

    Google Scholar 

  47. Kuznetsova, S.M., Skachkova, N.A., and Pilipenko, O.R., Modern methods of non-invasive brain stimulation in the rehabilitation of post-stroke patients, Zh. Nevrol.im.B.M. Man’kovskogo, 2016, vol. 4, no. 3, p. 5.

    Google Scholar 

  48. Kovaleva, O.A., Ventsova, A.G., Ligunova, D.M., et al., Comparative data analysis of transcranial dopplerography of cerebral vessels from the use of transcranial micropolarization in children with cognitive impairment, Al’m. Sovrem. Nauki Obraz., 2017, no. 6 (119), p. 54.

  49. Nitsche, M.A. and Paulus, W., Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation, J. Physiol., 2000, vol. 527, no. 3, p. 633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Monai, H., Ohkura, M., Tanaka, M., et al., Calcium imaging reveals glial involvement in transcranial direct current stimulation induced plasticity in mouse brain, Nat. Commun., 2016, vol. 7, p. 11.

    Article  CAS  Google Scholar 

  51. Il’ich, G.K. and Leshchenko, V.G., Elektricheskie i magnitnye svoistva biologicheskikh tkanei: uchebno-metodicheskoe posobie (Electric and Magnetic Properties of Biological Tissues: Manual), Minsk: Bel. Gos. Med. Univ., 2007.

  52. Komleva, Yu.K., Kuvacheva, N.V., Malinov-skaya, N.A., et al., Regenerative potential of the brain: population composition and the development of a regular microenvironment in neurogenic niches, Ann. Nevrol., 2014, vol. 8, no. 4, p. 44.

    Google Scholar 

  53. Miller, S.M., Bedside non-invasive neuromodulation of pain, psychiatric and neurological disorders using caloric vestibular stimulation: status and prospects, Proc. 13th World Congress Neuromodulation “Technology Changing Lives,” Edinburgh, May 27–June 1,2017, New York: Wiley, 2017, p. 30.

  54. Naryshkin, A.G., Galanin, I.V., Kozlovskii, V.L., and Popov, M.Yu., Vestibular neuromodulation in neurology and psychiatry, Obozr. Psikhiatr. Med. Psikhol., 2018, no. 2, p. 29.

  55. Miller, S.M., Vestibular neuromodulation: stimulating the neural crossroads of psychiatric illness, Bipolar Disord., 2016, vol. 18, p. 539.

    Article  PubMed  Google Scholar 

  56. Gurvich, C., Mailea, J.J., Lithgow, B., et al., Vestibular in sights in to cognition and psychiatry, Brain Res., 2013, vol. 1537, p. 224.

    Article  CAS  Google Scholar 

  57. Stolbkov, Yu.K., Tomilovskaya, E.S., Kozlov-skaya, I.B., et al., Galvanic vestibular stimulation in recent physiological and clinical studies, Usp. Fiziol. Nauk, 2014, vol. 45, no. 2, p. 57.

    PubMed  Google Scholar 

  58. Schmidt, L., Keller, I., and Katrin, S., Galvanic vestibular stimulation improves arm position sense in spatial neglect: a sham-stimulation-controlled study, Neuroscience, 2012, vol. 212, p. 159.

    Article  CAS  Google Scholar 

  59. Naryshkin, A.G., Galanin, I.V., Gorelik, A.L., et al., The efficiency of vestibular deception and its mechanisms in the treatment of amnestic syndrome, Obozr. Psikhiatr. Med. Psikhol. im. V.M. Bekhtereva, 2016, no. 2, p. 21.

  60. Naryshkin, A.G. and Galanin, I.V., Chemical vestibular deception as a new opportunity in the treatment of severe forms of extrapyramidal symptoms associated with the use of psychotropic drugs, Obozr. Psikhiatr. Med. Psikhol. im. V.M. Bekhtereva, 2016, no. 3, p. 98.

  61. Naryshkin, A.G., Galanin, I.V., Gorelik, A.L., et al., Vestibular deception as a method of neuromodulation in the treatment of neurological and mental manifestations of Parkinson’s disease, Obozr. Psikhiatr. Med. Psikhol. im. V.M. Bekhtereva, 2017, no. 4, p. 89.

  62. Naryshkin, A.G., Galanin, I.V., Gorelik, A.L., et al., Chastnye voprosy neiroplastichnosti. Vestibulyarnaya deretseptsiya (Particular Problems of Neuroplasticity. Vestibular Dereception), St. Petersburg: Foliant, 2017.

  63. Danilov, Y. and Paltin, D., Translingual Neurostimulation (TLNS): a novel approach to neurorehabilitation, Phys. Med. Rehabil. Int., 2017, vol. 4, no. 2, p. 1117.

    Article  Google Scholar 

  64. Papa, L., La Mee, A., Tan, C.N., et al., Systematic review and meta-analysis of noninvasive cranial nerve neuromodulation for nervous system disorders, Arch. Phys. Med. Rehabil., 2014, vol. 95, no. 12, p. 2435.

    Article  PubMed  Google Scholar 

  65. Kaczmarek, K.A., The portable neuromodulation stimulator (PoNS) for neurorehabilitation, Sci. Iranica, 2017, vol. 24, no. 6, p. 3171.

    Google Scholar 

  66. Tyler, M.E., Kaczmarek, K.A., Rust, K.L., et al., Non-invasive neuromodulation to improve gait in chronic multiple sclerosis: a randomized double blind controlled pilot trial, J. NeuroEng. Rehabil., 2014, vol. 79, no. 11, p. 1.

    Google Scholar 

  67. Verbny, Y., Vishwanathan, G., Skinner, K., et al., Eye movement enhancement in Parkinson’s disease as a result of CN-NINM intervention: a case study, J. Head Trauma Rehabil., 2015, vol. 30, no. 3, p. 98.

    Google Scholar 

  68. Kukurin, G.V., Non-invasive brain stimulation in m-TBI, Proc. 2014 IBIA Tenth World Congress on Brain Injury, Alexandria, VA: Int. Brain Injury Assoc., 2014, vol. 28, nos. 5–6, p. 42.

  69. Chisholm, A.E., Malik, R.N., Blouin, J.S., et al., Feasibility of sensory tongue stimulation combined with task-specific therapy in people with spinal cord injury: a case study, J. NeuroEng. Rehabil., 2014, vol. 11, art. ID 96.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Barros, C.C., Bittar, R.S., and Danilov, Y., Effects of electro tactile vestibular substitution on rehabilitation of patients with bilateral vestibular loss, Neurosci. Lett., 2010, vol. 476, no. 3, p. 123.

    Article  CAS  PubMed  Google Scholar 

  71. Danilov, Y., Kaczmarek, K., Skinner, K., et al., Cranial nerve noninvasive neuromodulation: New approach to neurorehabilitation, in Brain Neurotrauma: Molecular, Neuropsychological, and Rehabilitation Aspects, Boca Raton, FL: CRC Press, 2015, p. 605.

    Google Scholar 

  72. Doidge, N., The Brain’s Way of Healing: Remarkable Discoveries and Recoveries from the Frontiers of Neuroplasticity, New York: Viking, 2015.

    Google Scholar 

Download references

Funding

This study was carried in the framework of the project on “The mechanisms of the formation of physiological functions in phylo- and ontogenesis and the influence of endogenous and exogenous factors on them”, State Contract no. AAAA-A18-118012290373-7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Naryshkin.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by E. Babchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naryshkin, A.G., Galanin, I.V. & Egorov, A.Y. Controlled Neuroplasticity. Hum Physiol 46, 216–223 (2020). https://doi.org/10.1134/S0362119720020103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119720020103

Keywords:

Navigation