Skip to main content
Log in

Apples as a Source of Soluble and Insoluble Dietary Fibers: Effect of Dietary Fibers on Appetite

  • REVIEWS
  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

The review discusses the functional role of soluble and insoluble dietary fibers (DFs) contained in apples. The physiological effects of eating apples are considered along with possible mechanism of controlling appetite with the use of apple DFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Slavin, J.L. and Lloyd, B., Health benefits of fruits and vegetables, Adv. Nutr., 2012, vol. 3, no. 4, p. 506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Feretti, G., Turco, I., and Bacchetti, T., Apple as source of dietary phytonutrients: bioavailability and evidence of protective effects against human cardiovascular disease, Food Nutr. Sci., 2014, vol. 5, no. 13, p. 1234.

    Google Scholar 

  3. Zielinski, G., DeVries, J.W., Crag, S.A., and Bridges, A.R., Dietary fiber in codex alimentarius: current status and ongoing discussion, Cereal Foods Worlds, 2013, vol. 58, no. 3, p. 148.

    Article  Google Scholar 

  4. Dhingra, D., Michael, M., Rajput, H., and Patil, R.T., Dietary fibre in foods: a review, J. Food Sci. Technol., 2012, vol. 49, no. 3, p. 255.

    Article  CAS  PubMed  Google Scholar 

  5. Chawla, R. and Patil, G.R., Soluble dietary fiber, Compr. Rev. Food Sci. Food Saf., 2010, vol. 9, no. 2, p. 178.

    Article  CAS  Google Scholar 

  6. Sato, M.F., Vieira, R.G., Zardo, D., et al., Apple pomace from eleven cultivars: an approach to identify sources of bioactive compounds, Acta Sci. Agron., 2010, vol. 32, no. 1, p. 29.

    CAS  Google Scholar 

  7. Perry, J.R. and Ying, W., A review of physiological effects of soluble and insoluble dietary fibers, J. Nutr. Food Sci., 2016, vol. 6, no. 2, p. 476.

    Google Scholar 

  8. Capuano, E., The behavior of dietary fiber in the gastrointestinal tract determines its physiological effect, Crit. Rev. Food Sci. Nutr., 2017, vol. 57, no. 16, p. 3543.

    Article  CAS  PubMed  Google Scholar 

  9. Chen, H.L., Lin, Y.M., and Wang, Y.C., Comparative effects of cellulose and soluble fibers (pectin, konjac glucomannan, inulin) on fecal water toxicity toward Caco-2 cells, fecal bacteria enzymes, bile acid, and short-chain fatty acids, J. Agric. Food Chem., 2010, vol. 58, no. 18, p. 10277.

    Article  CAS  PubMed  Google Scholar 

  10. Brambillasca, S., Zunino, P., and Cajarville, C., Addition of inulin, alfalfa and citrus pulp in diets for piglets: influence on nutritional and faecal parameters, intestinal organs, and colonic fermentation and bacterial populations, Livest. Sci., 2015, vol. 178, p. 243.

    Article  Google Scholar 

  11. Robles, A.V. and Guarner, F., Linking the gut microbiota to human health, Br. J. Nutr., 2013, vol. 109, suppl. 2, p. S21.

    Article  CAS  Google Scholar 

  12. Desai, M.S., Seekatz, A.M., Koropatkin, N.M., et al., A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility, Cell, 2016, vol. 167, no. 5, p. 1339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sanchez, D., Muguerza, B., Moulay, L., et al., Highly methoxylated pectin improves insulin resistance and other cardiometabolic risk factors in Zucker fatty rats, J. Agric. Food Chem., 2008, vol. 56, no. 10, p. 3574.

    Article  CAS  PubMed  Google Scholar 

  14. McClements, D.J., Decker, E.A., and Park, Y., Controlling lipid bioavalability through physicochemical and structural approaches, Crit. Rev. Food Sci. Nutr., 2009, vol. 49, no. 1, p. 48.

    Article  PubMed  Google Scholar 

  15. Kumar, A. and Chauhan, G.S., Extraction and characterization of pectin from apple pomace and its evaluation as lipase (steapsin) inhibitor, Carbohydr. Polym., 2010, vol. 82, no. 2, p. 454.

    Article  CAS  Google Scholar 

  16. Espinal-Ruiz, M., Parada, A.F., Restrepo-Sanchez, L.-P., et al., Impact of a dietary fibers methyl cellulose? Chitosan and pectin on digestion of lipids under simulated gastrointestinal conditions, Food Funct., 2014, vol. 5, no. 12, p. 3083.

    Article  CAS  PubMed  Google Scholar 

  17. Sun, J. and Liu, R., Apple phytochemical extracts inhibit proliferation of estrogen-dependent and estrogen-independent human cancer cells through cell cycle modulation, J. Agric. Food Chem., 2008, vol. 56, no. 24, p. 11661.

    Article  CAS  PubMed  Google Scholar 

  18. Young, G.P., Hu, Y., Le Leu, R.K., and Nyskohus, L., Dietary fibre and colorectal cancer. A model for environment–gene interactions, Mol. Nutr. Food Res., 2005, vol. 49, no. 6, p. 571.

    Article  PubMed  Google Scholar 

  19. Fiorucci, S. and Distrutti, E., Bile acid-activated receptors, intestinal microbiota and treatment of metabolic disorders, Trends Mol. Med., 2015, vol. 21, no. 11, p. 702.

    Article  CAS  PubMed  Google Scholar 

  20. Hyson, D.A., A comprehensive review of apples and apple components and their relationship to human health, Adv. Nutr., 2011, vol. 2, no. 5, p. 408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Licht, T.R., Hansen, M., Bergstrom, A., et al., Effects of apples and specific apple component on the cecal environment of conventional rats: role of apple pectin, BMC Microbiol., 2010, vol. 10, no. 13, p. 10.

    Article  CAS  Google Scholar 

  22. Jiang, T., Gao, X., Wu, Ch., et al., Apple-derived pectin modulates gut microbiota, improves gut barrier function, and attenuates metabolic endotoxemia in rats with diet-induced obesity, Nutrients, 2016, vol. 8, no. 3, p. 126.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Fiquerola, F., Luz Hurtado, M., Estevez, A.M., et al., Fibre concentrates from apple pomace and citrus peel as potential fibre sources for food enrichment, Food Chem., 2005, vol. 91, no. 3, p. 395.

    Article  CAS  Google Scholar 

  24. Gorinstein, S., Zachwieja, Z., Folta, M., et al., Comparative content of dietary fiber, total phenolics and minerals in persimmons and apples, J. Agric. Food Chem., 2001, vol. 49, no. 2, p. 952.

    Article  CAS  PubMed  Google Scholar 

  25. Gheyas, F., Blankenship, S.M., Young, E., and Mc-Feeters, R., Dietary fibre content of thirteen apple cultivars, J. Sci. Food Agric., 1997, vol. 75, p. 333.

    Article  CAS  Google Scholar 

  26. Colin-Henrion, M., Mehinagic, E., Renard, C.M.G.C., et al., From apple to applesauce: processing effects on dietary fibres and cell wall polysaccharides, Food Chem., 2009, vol. 117, no. 2, p. 254.

    Article  CAS  Google Scholar 

  27. Fadaei, V. and Salehifar, M., Some chemical and functional characteristics of dietary fiber from five fiber sources, Eur. J. Exp. Biol., 2012, vol. 2, no. 3, p. 525.

    CAS  Google Scholar 

  28. Williams, B.A., Grant, L.J., Gidley, M.J., and Mikkelsen, D., Gut fermentation of dietary fibres: Physico-chemistry of plant cell walls and implications for health, Int. J. Mol. Sci., 2017, vol. 18, no. 10, p. 2203.

    Article  PubMed Central  CAS  Google Scholar 

  29. Mohnen, D., Pectin structure and biosynthesis, Curr. Opin. Plant Biol., 2008, vol. 11, no. 3, p. 266.

    Article  CAS  PubMed  Google Scholar 

  30. Thakur, B.R., Singh, R.K., and Handa, A.K., Chemistry and uses of pectin—a review, Crit. Rev. Food Sci. Nutr., 1997, vol. 37, no. 1, p. 47.

    Article  CAS  PubMed  Google Scholar 

  31. Ovodov, Yu.S., Current views on pectin substances, Russ. J. Bioorg. Chem., 2009, vol. 35, no. 3, p. 269.

    Article  CAS  Google Scholar 

  32. Billy, L., Mehinagic, E., Royer, G., et al., Relationship between texture and pectin composition of two apple cultivars during storage, Postharvest Biol. Technol., 2008, vol. 47, no. 3, p. 315.

    Article  CAS  Google Scholar 

  33. Dongowski, G., Sembries, S., Bauckhage, K., et al., Degradation of apple cell wall material by commercial enzyme preparations, Nahrung, 2002, vol. 46, no. 2, p. 105.

    Article  CAS  PubMed  Google Scholar 

  34. Wikiera, A., Iria, M., and Mika, M., Health-promoting properties of pectin, Postepy Hig. Med. Dosw., 2014, vol. 68, p. 590.

    Article  Google Scholar 

  35. Cani, P.D., Amar, J., Iglesias, M.A., et al., Metabolic endotoxemia initiates obesity and insulin resistence, Diabetes, 2007, vol. 56, no. 7, p. 1761.

    Article  CAS  PubMed  Google Scholar 

  36. Cani, P.D., Hoste, S., Guiot, Y., and Delzenne, N.M., Dietary non-digestible carbohydrates promote L-cell differentiation in the proximal colon rats, Br. J. Nutr., 2007, vol. 98, no. 1, p. 32.

    Article  CAS  PubMed  Google Scholar 

  37. Fabiani, R., Minelli, L., and Rosignoli, P., Apple intake and cancer risk, a systematic review and meta-analysis of observational studies, Publ. Health Nutr., 2016, vol. 19, no. 14, p. 2603.

    Article  Google Scholar 

  38. Liu, J.R., Dong, H.W., Chen, B.Q., et al., Fresh apples suppress mammary carcinogenesis and proliferative activity and induce apoptosis in mammary tumors of the Spraque-Dawley rat, J. Agric. Food Chem., 2009, vol. 57, no. 1, p. 297.

    Article  CAS  PubMed  Google Scholar 

  39. Li, Y., Liu, L., Niu, Y., et al., Modified apple polysaccharide prevents against tumorigenesis in a mouse model of colitis-associated colon cancer: role of galectin-3 and apoptosis in cancer prevention, Eur. J. Nutr., 2012, vol. 51, no. 1, p. 107.

    Article  CAS  PubMed  Google Scholar 

  40. Olano-Martin, E., Rimbach, G.H., Gibson, G.R., and Rastall, R.A., Pectin and pectic-oligosaccharides induce apoptosis in vitro human colonic adenocarcinoma cells, Anticancer Res., 2003, vol. 23, no. 1, p. 341.

    CAS  PubMed  Google Scholar 

  41. Liu, L., Li, Y.H., Niu, Y.B., et al., An apple oligogalactan prevents against inflammation and carcinogenesis by targeting LPS/TLR4/NF-kB pathway in a mouse model of colitis-associated colon cancer, Carcinogenesis, 2010, vol. 31, no. 10, p. 1822.

    Article  CAS  PubMed  Google Scholar 

  42. Zhang, D., Li, Y.H., Jiang, F.L., et al., Modified apple polysaccharides suppress the migration and invasion of colorectal cancer cells induced by lipopolysaccharide, Nutr. Res., 2013, vol. 33, no. 10, p. 839.

    Article  PubMed  CAS  Google Scholar 

  43. Pirman, T., Ribeyre, M.C., Mosoni, L., et al., Dietary pectin stimulates protein metabolism in the digestive tract, Nutrition, 2007, vol. 23, no. 1, p. 69.

    Article  CAS  PubMed  Google Scholar 

  44. Tremaroli, V. and Backhed, F., Functional interactions between the gut microbiota and host metabolism, Nature, 2012, vol. 489, no. 7415, p. 242.

    Article  CAS  PubMed  Google Scholar 

  45. Chen,C.H., Sheu, M.T., Chen, T.F., et al., Suppression of endotoxin-induced proinflammatory responses by citrus pectin through blocking LPS signaling pathways, Biochem. Pharmacol., 2006, vol. 72, no. 8, p. 1001.

    Article  CAS  PubMed  Google Scholar 

  46. Leontowicz, M., Gorinstein, S., Leontowicz, H., et al., Apple and pear peel and pulp and their influence on plasma lipids and antioxidant potentials in rats fed cholesterol-containing diets, J. Agric. Food Chem., 2003, vol. 51, no. 19, p. 5780.

    Article  CAS  PubMed  Google Scholar 

  47. Terpstra, A.H., Lapre, J.A., de Vries, H.T., and Beynen, A.C., Intact pectin and its polygalacturonic acid regions have similar hypocholesterolemic properties in hybrid F1B hamsters, Nahrung, 2002, vol. 46, no. 2, p. 83.

    Article  CAS  PubMed  Google Scholar 

  48. Wolfe, K., Wu, X., and Liu, R.H., Antioxidant activity of apple peels, J. Agric. Food Chem., 2003, vol. 51, no. 3, p. 609.

    Article  CAS  PubMed  Google Scholar 

  49. Vrhovsek, U., Rigo, A., Tonon, D., and Mattivi, F., Quantitation of polyphenols in different apple varieties, J. Agric. Food Chem., 2004, vol. 52, no. 21, p. 6532.

    Article  CAS  PubMed  Google Scholar 

  50. Quiros-Sauceda, A.E., Palafox-Carlos, H., Sayago-Ayerdi, S.G., et al., Dietary fiber and phenolic compounds as functional ingredients: interaction and possible effect after ingestion, Food Funct., 2014, vol. 5, no. 6, p. 1063.

    Article  CAS  PubMed  Google Scholar 

  51. Saura-Calixto, F., Dietary Fiber as a carrier of dietary antioxidants: an essential physiological function, J. Agric. Food Chem., 2011, vol. 59, no. 1, p. 43.

    Article  CAS  PubMed  Google Scholar 

  52. Nishijima, T., Takida, Y., Saito, Y., et al., Simultaneous ingestion of high-methoxy pectin from apple can enchance absorption of quercetin in human subjects, Br. J. Nutr., 2015, vol. 113, no. 10, p. 1531.

    Article  CAS  PubMed  Google Scholar 

  53. Aprikian, O., Duclos, V., Guyot, S., et al., Apple pectin and a polyphenol rich apple concentrate are more effective together than separately on cecal fermentations and plasma lipids in rats, J. Nutr., 2003, vol. 133, no. 6, p. 1860.

    Article  CAS  PubMed  Google Scholar 

  54. Boyer, J. and Liu, R.H., Apple phytochemicals and their health benefits, Nutr. J., 2004, vol. 3, no. 5. http://www.nutritionj.com/content/3/1/5.

  55. Çelik, E.E., Gőkmen, V., and Skibsted, L.H., Synergism between soluble and dietary fiber bound antioxidants, J. Agric. Food Chem., 2015, vol. 63, no. 8, p. 2338.

    Article  PubMed  CAS  Google Scholar 

  56. Liu, R.H., Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals, Am. J. Clin. Nutr., 2003, vol. 78, suppl. 3, p. 517.

    Article  Google Scholar 

  57. Liu, X., Wu, Y., Li, F., and Zhang, D., Dietary fiber intake reduces risk of inflammatory bowel disease: result from a meta-analysis, Nutr. Res., 2015, vol. 35, no. 9, p. 753.

    Article  PubMed  CAS  Google Scholar 

  58. Samout, N., Bouzenna, H., Dhibi, S., et al., Therapeutic effect of apple pectin in obese rats, Biomed. Parmacother., 2016, vol. 83, p. 1233.

    Article  CAS  Google Scholar 

  59. Wismar, R., Brix, S., Frokiaer, H., and Laerke, H.N., Dietary fibers as immunoregulatory compounds in health and disease, Ann. N. Y. Acad. Sci., 2010, no. 1190, p. 70.

  60. Najafian, M.Z., Jahromi, M.J., Nowroznejhad, P., et al., Phloridzin reduces blood glucose levels and improves lipids metabolism in streptozotocin-induced diabetic rats, Mol. Biol. Rep., 2012, vol. 39, no. 5, p. 5299.

    Article  CAS  PubMed  Google Scholar 

  61. Wolfe, K.E. and Liu, R.H., Apples peels as value-added food ingredient, J. Agric. Food Chem., 2003, vol. 51, no. 6, p. 1676.

    Article  CAS  PubMed  Google Scholar 

  62. Feliciano, R.P., Antunes, C., Ramos, A., et al., Characterization of traditional and exotic apple varieties from Portugal. Part 1—Nutritional phytochemical and sensory evaluation, J. Funct. Foods, 2010, vol. 2, no. 1, p. 35.

    Article  CAS  Google Scholar 

  63. Koryachkina, S.Ya., Ladnova, O.L., Godunov, O.A., et al., The physiological effect of the use of fruit and vegetable powders in an animal experiment, Vopr. Pitan., 2016, vol. 85, no. 6, p. 48.

    PubMed  Google Scholar 

  64. Avci, A., Atli, T., Eruder, I., et al., Effects of apple consumption on plasma and erythrocyte antioxidant parameters in elderly subjects, Exp. Aging Res., 2007, vol. 33, no. 4, p. 429.

    Article  PubMed  Google Scholar 

  65. Ko, S.-H., Choi, S.-W., Ye, S.-K., et al., Comparison of the antioxidant activities of nine different fruits in human plasma, J. Med. Food., 2005, vol. 8, no. 1, p. 41.

    Article  CAS  PubMed  Google Scholar 

  66. Asita, A.O. and Molise, T., Antimutagenic effects of red apple and watermelon juices on cyclophosphamide-induced genotoxicity in mice, Afr. J. Biotechnol., 2011, vol. 10, no. 77, p. 17763.

    Article  CAS  Google Scholar 

  67. Ivanova, N.N., Khomich, L.M., and Petrova, I.B., Nutrient profile of apple juice, Vopr. Pitan., 2017, vol. 86, no. 4, p. 125.

    CAS  PubMed  Google Scholar 

  68. Sudha, M.L., Dharmesh, S.M., Pynam, H., et al., Antioxidant and cyto/DNA protective properties of apple pomace enriched bakery products, J. Food Sci. Technol., 2016, vol. 53, no. 4, p. 1909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Rana, S., Gupta, S., Rana, A., and Bushan, S., Functional properties, phenolic constituents and antioxidant potential of industrial apple pomace for utilization as active food ingredient, Food Sci. Human Wellness, 2015, vol. 4, no. 4, p. 180.

    Article  Google Scholar 

  70. Chen, H., Rubenthaler, G.L., Leung, H., and Baranowski, J.D., Chemical, physical and baking properties of apple fiber compared with wheat and oat bran, Cereal Chem., 1988, vol. 65, no. 3, p. 244.

    Google Scholar 

  71. Kolodziejczyk, K., Markowski, J., Kosmala, M., et al., Apple pomace as a potential source of nutraceutical products, Pol. J. Food Nutr. Sci., 2007, vol. 57, no. 4, p. 291.

    Google Scholar 

  72. Bessonov, V.V., Baigarin, E.K., Gorshunova, P.A., et al., The interaction of dietary fiber with various functional food ingredients, Vopr. Pitan., 2012, vol. 81, no. 3, p. 41.

    CAS  PubMed  Google Scholar 

  73. De Graaf, C., Blom, W., Smeets, P., Stafleu, A., et al., Biomarkers of satiation and satiety, Am. J. Clin. Nutr., 2004, vol. 79, no. 6, p. 946.

    Article  CAS  PubMed  Google Scholar 

  74. Kristensen, M. and Jensen, M.G., Dietary fibres in the regulation of appetite and food intake. Importance of viscosity, Appetite, 2011, vol. 56, no. 1, p. 65.

    Article  CAS  PubMed  Google Scholar 

  75. Clark, M.J. and Slavin, J.L., The effect of fiber on satiety and food intake: a systematic review, J. Am. Coll. Nutr., 2013, vol. 32, no. 3, p. 200.

    Article  CAS  PubMed  Google Scholar 

  76. Wanders, A.J., Jonathan, M.C., van den Borne, J.J.G.C., et al., The effects of bulking, viscous and gel-forming dietary fibres on satiation, Br. J. Nutr., 2013, vol. 109, no. 7, p. 1330.

    Article  CAS  PubMed  Google Scholar 

  77. Fiszman, S. and Varela, P., The satiating mechanisms of major food constituents—An aid to rational food design, Trends Food Sci. Technol., 2013, vol. 32, no. 1, p. 43.

    Article  CAS  Google Scholar 

  78. Borreani, J., Llorca, E., Larrea, V., and Hernando, I., Adding neutral or anionic hydrocolloids to dairy proteins under in vitro gastric digestion conditions, Food Hydrocolloids, 2016, vol. 57, p. 169.

    Article  CAS  Google Scholar 

  79. Müller, M., Canfora, E.E., and Blaak, E.E., Gastrointestinal transit time, glucose homeostasis and metabolic health: modulation by dietary fibers, Nutrition, 2018, V. 10, no. 3, p. 275.

    Google Scholar 

  80. Adam, C.L., Gratz, S.W., Peinado, D.I., et al., Effects of dietary fibre (pectin) and/or increased protein (casein or pea) on satiety, body weight, adiposity and caecal fermentation in high fat diet-induced obese rats, PloS One, 2016, vol. 11, no. 5, p. 1.

    CAS  Google Scholar 

  81. Pereira, M.A. and Ludwig, D.S., Dietary fiber and body-weight regulation. Observations and mechanisms, Pediatr. Clin. North Am., 2001, vol. 48, no. 4, p. 969.

    Article  CAS  PubMed  Google Scholar 

  82. Flood-Obbagy, J.E. and Rolls, B.S., The effect of fruit in different forms on energy intake and satiety an meal, Appetite, 2009, vol. 52, no. 2, p. 416.

    Article  PubMed  Google Scholar 

  83. Rolls, B.J., Dietary energy density: applying behavioural science to weight management, Nutr. Bull., 2017, vol. 42, no. 3, p. 246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. O’Neil, C.E., Nicklas, T.A., and Fulgoni, V.L., Consumption of apples is associated with a better diet quality and reduced risk of obesity in children: National Health and Nutrition Examination Survey (NHANES) 2003-2010, Nutr. J., 2015, vol. 14, no. 1, p. 48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Cho, K.-D., Han, C.-K., and Lee, B.H., Loss of body weight and fat and improved lipid profiles in obese rats fed apple pomace or apple juice concentrate, J. Med. Food., 2013, vol. 16, no. 9, p. 823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Delzenne, N.M. and Cani, P.H., Some studies have reported a satiety effect of soluble fibers, Curr. Opin. Clin. Nutr. Metab., 2005, vol. 8, no. 6, p. 636.

    Article  Google Scholar 

  87. Zhang, S. and Vardhanabhuti, B., Intragastric gelation of whey protein-pectin alters the digestibility of whey protein during in vitro pepsin digestion, Food Funct., 2014, vol. 5, no. 1, p. 102.

    Article  CAS  PubMed  Google Scholar 

  88. Cummings, D.E., Ghrelin and the short- and long-term regulation of appetite and body weight, Physiol. Behav., 2006, vol. 89, no. 1, p. 71.

    Article  CAS  PubMed  Google Scholar 

  89. Slavin J., Fiber and prebiotics: mechanisms and health benefits, Nutrients, 2013, vol. 5, no. 4, p. 1417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Adam, C.L., Williams, P.A., Garden, K.E., et al., Dose-dependent effects of a soluble dietary fibre (pectin) on food intake, adiposity, gut hypertrophy and gut satiety hormone secretion in rats, PloS One, 2015, vol. 10, no. 1, p. 438.

    Google Scholar 

  91. Adam, C.L., Williams, P.A., Dalby, M.J., et al., Different types of soluble fermentable dietary fibre decrease food intake, body weight gain and adiposity in young adult male rats, Nutr. Metab. (London), 2014, vol. 11, p. 36.

    Article  CAS  Google Scholar 

  92. Galvao, F.C., Ton, W.T.S., and Alfenas, C.G., Addition of dietary fiber sources to shakes reduces postprandial glycemia and alters food intake, Nutr. Hosp., 2015, vol. 31, no. 1, p. 299.

    Google Scholar 

  93. Dandona, P., Aljada, A., and Bandyopadhyay, A., Inflammation: the link between insulin resistance, obesity and diabetes, Trends Immunol., 2004, vol. 25, no. 1, p. 4.

    Article  CAS  PubMed  Google Scholar 

  94. Lalles, J.P., Intestinal alkaline phosphatase: novel functions and protective effects, Nutr. Rev., 2014, vol. 72, no. 2, p. 82.

    Article  PubMed  Google Scholar 

  95. Efimtseva, E.A. and Chelpanova, T.I., Alkaline phosphatase: involvement into the detoxification of bacterial endotoxin, Usp. Sovrem. Biol., 2015, vol. 135, no. 3, p. 279.

    Google Scholar 

  96. Conceição de Oliveira, M., Sichieri R.,and Sanchez Moura A., Weight loss associated with a daily intake of three apples or three pears among overweight women, Nutrition, 2003, vol. 19, no. 3, p. 253.

    Article  PubMed  Google Scholar 

  97. Backhed, F., Ding, H., Wang, T., et al., The gut microbiota as an environmental factor that regulates fat storage, Proc. Natl. Acad. Sci. U.S.A., 2004, vol. 101, no. 44, p. 15718.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Turnbaugh, P.J., Ley, R.E., Mahowald, M.A., et al., An obesity-associated gut microbiome with increased capacity for energy harvest, Nature, 2006, vol. 444, no. 7122, p. 1027.

    Article  PubMed  Google Scholar 

  99. Shen, J., Obin, M.S., and Zhao, L., The gut microbiota, obesity and insulin resistance, Mol. Aspects Med., 2013, vol. 34, no. 1, p. 39.

    Article  CAS  PubMed  Google Scholar 

  100. Koustos, A., Tuohy, K.M., and Lovegrove, J.A., Apples and cardiovascular health—is the gut microbiota a core consideration? Nutrients, 2015, vol. 7, no. 6, p. 3959.

    Article  CAS  Google Scholar 

  101. López-Cepero, A.A. and Palacios, C., Association of the intestinal microbiota and obesity, P. R. Health Sci. J., 2015, vol. 34, no. 2, p. 60.

    PubMed  Google Scholar 

  102. Dongowski, G., Lorenz, A., and Proll, J., The degree of methylation influences the degradation of pectin in intestinal tract of rats and in vitro, J. Nutr., 2002, vol. 132, no. 7, p. 1935.

    Article  CAS  PubMed  Google Scholar 

  103. Byrne, C.S., Chambers, E.S., Morrison, D.J., and Frost, G., The role of short chain fatty acids in appetite regulation and energy homeostasis, Int. J. Obes. (London), 2015, vol. 39, no. 9, p. 1331.

    Article  CAS  Google Scholar 

  104. Lin, H.V., Frasseto, A., Rowalik, E.J., et al., Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms, PloS One, 2012, vol. 7, no. 4, p. e35240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Chambers, E.S., Morrison, D.J., and Frost, G., Control of appetite and energy intake by SCFA: what are the potential underlying mechanisms? Proc. Nutr. Soc., 2015, vol. 74, no. 3, p. 328.

    Article  CAS  PubMed  Google Scholar 

  106. Arora, T., Sharma, R., and Frost, G., Propionate. Anti-obesity and satiety enhancing factor? Appetite, 2011, vol. 56, no. 2, p. 511.

    Article  PubMed  Google Scholar 

  107. Ríos-Covián, D., Ruas-Madiedo, P., Margolles, A., et al., Intestinal short chain fatty acids and their link with diet and human health, Front. Microbiol., 2016, vol. 7, p. 185.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Program of Basic Research at the State Academies of Sciences for the Period from 2013 to 2020 (project no. AAAA-A17-117012310147-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. I. Chelpanova.

Ethics declarations

Conflict of interests. The authors declare that they have no real or potential conflict of interest.

This article does not contain any studies involving animals or humans as subjects performed by any of the authors.

Additional information

Translated by T. Tkacheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Efimtseva, E.A., Chelpanova, T.I. Apples as a Source of Soluble and Insoluble Dietary Fibers: Effect of Dietary Fibers on Appetite. Hum Physiol 46, 224–234 (2020). https://doi.org/10.1134/S036211972002005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S036211972002005X

Keywords:

Navigation