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Abstract⎯In this paper, we consider the course of the coronavirus disease (COVID-19) in human patients.
We investigate anamnesis, examination, and clinical analysis data, as well as other features that can affect the
severity and mortality of COVID-19. Based on these features, we develop a set of machine learning and sta-
tistical models that can predict the severity of the coronavirus disease and its outcome for inpatients and out-
patients.
The main contribution of this work is the development of the CT Calculator service, which is integrated in
the Moscow city medical information system. This service allows one to assesses the degree of changes in the
lung tissue of COVID-19 patients in an express mode without computed tomography (CT) scan, as well as
predict the degree of lung damage.
The developed machine learning models make it possible to determine the degree of risk for mild and severe
forms of the coronavirus disease depending on various factors.

DOI: 10.1134/S0361768822040065

1. INTRODUCTION
On March 11, 2020, the World Health Organiza-

tion declared the coronavirus disease (COVID-19)
caused by the SARS-CoV-2 virus a global pandemic.
Since the beginning of the pandemic, the Center for
Systems Science and Engineering (CSSE) at the Johns
Hopkins University1 registered more than 10 million
COVID-19 cases and more than 292 thousand coro-
navirus-related deaths in the Russian Federation as of
December 20, 2021.

The daily growth in the number of infected people
causes the increase in the workload on medical per-
sonnel and medical equipment, deterioration in the
quality of assessment of the condition of patients, and
overall growth of healthcare expenditures.

The pandemic dramatically accelerated the intro-
duction of digital services in Moscow medical organi-
zations. Since March 2019, Moscow polyclinics and

hospitals accumulated a large amount of medical his-
tory data on more than two million people.

A patient with confirmed COVID-19 undergoes a
complex clinical examination.

First, an anamnesis is collected, including the
individual characteristics of the patient (chronic dis-
eases, gender, age, etc.). Then, the doctor conducts a
physical examination (respiratory rate, saturation,
body temperature, and severity of the decease).
Finally, laboratory data are collected: clinical analysis
of blood and urine, as well as blood biochemistry test.

Computed tomography (CT) is widely employed to
assess the state of lung tissue. CT results can serve as
predictors of hospitalization or help to predict an
adverse outcome in the intensive care unit. Figure 1
matches the severity of COVID-19 forms with the
degree of lung damage on CT scans.

However, the CT-based approach to assessing lung
damage has certain disadvantages, e.g., the risk of cre-
ating artificial epidemic foci, inefficient operation of1 https://origin-coronavirus.jhu.edu/map.html
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Fig. 1. Correspondence between the CT degree of lung damage and the form of COVID-19.

Mild form
(CT 0–1, damage up to 25%)

Moderate-severe form
(CT-2, 25–50% damage)

Severe form
(CT-3, 50–75% damage)

Critical form
(CT-4, damage more than 75%)
ambulance services, and high cost of the CT proce-
dure. In addition, there are problems associated with
the radiation safety of patients and doctors.

The development of predictive models for assessing
lung damage based on collected data, as well as identi-
fying the most important features that affect the devel-
opment of pulmonary pneumonia, is very important.
As an alternative diagnostic tool for analyzing the state
of lung tissue in COVID-19 patients, we design and
investigate several data mining methods to assess the
degree of lung damage in the express mode based on
the physical and clinical features of the patient.

It should be noted that, in this work, we use real-
world data from several sources: CT centers, laborato-
ries, clinics, and hospitals. When collecting data from
several sources, a number of problems arise: input
errors and contradicting features, nonuniform filling
of certain features (in particular, clinical and bio-
chemical data are rarely available for ordinary
patients), as well as different volumes and complete-
ness of collected data. High accuracy of predictive
models cannot be achieved without the construction
and detailed investigation of algorithms for solving
these problems.

The developed predictive models can be used as a
medical decision support system, which reduces both
the number of examinations and radiation exposure of
the patients. In addition, this system reduces the work-
load on medical equipment (CT centers) and can be
employed in the regions where access to CT scanners
is limited or this equipment is not available.

This paper is organized as follows. Section 2 over-
views some related works on the use of machine learn-
ing methods to analyze COVID-19 data. Section 3 dis-
cusses the specifics of the problem under consider-
ation and investigates the possibility of using machine
learning models for its solution. Section 4 describes
the datasets and quality metrics used in this work and
considers a complete algorithm for data collection and
preprocessing, including elimination of inconsisten-
cies (artifacts) and unification of feature values. In
addition, the section conducts an experimental inves-
tigation of the quality of the proposed methods. Sec-
tion 5 is devoted to the implementation of the CT Cal-
culator service, interaction with the service, and its
integration into external environment. Section 6 pres-
ents the main results of this work.
PROGRAMMING A
2. OVERVIEW OF RELATED LITERATURE
This section considers several types of research

papers devoted to the use of machine learning meth-
ods for COVID-19 data analysis: the analysis of the
spread of COVID-19 [1], analysis of CT images [2],
and analysis of clinical data [3–5].

2.1. Analysis of the Spread of COVID-19
Currently, there are several types of research papers

devoted to COVID-19 prediction.
First, there are papers on predicting daily morbid-

ity and mortality. In [1], the problem of analyzing and
predicting the time series of cumulative incidence of
COVID-19 over a 14-day period was addressed.
In that study, the authors considered LSTM and GRU
neural network models, as well as AR and ARIMA sta-
tistical models.

As a dataset, mobility data collected in Spain using
the GMD tool (Google)2 were used. This dataset con-
tained aggregated and anonymized data obtained
using Google products (in particular, Google Maps).
The main features were citizen mobility trends in
places of different types: parks, supermarkets, public
transport, workplaces, and residences.

The best short-term prediction result was shown by
an ensemble of the considered methods (0.93R2,

, and ).

2.2. Analysis of CT Images
There are papers devoted to analyzing CT images

and predicting the severity of the coronavirus disease.
In [2], the binary classification of chest X-rays based
on the presence of COVID-19 was carried out. It was
proposed to extract features from the chest X-rays by
using orthogonal fractional-order exponent moments
(FrMEMs).

Then, the MRFODE feature selection algorithm
was used to generate a set of solutions and compute a
fitness value for each feature by using a trainable
k-nearest neighbors (k-NN) classifier with the deter-
mination of the best feature. The selection of the best
feature was carried out until certain termination crite-
ria were met. Based on differential evolution, binary
vectors were generated using the selected features, and
the k-NN classifier was trained.

Two different datasets were considered. The first
dataset, collected from pediatric patients (one to five

2 https://www.google.com/covid19/mobility
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years) from the Guangzhou Medical Center, con-
tained images of common and viral pneumonia. This
dataset contained 216 positive and 1675 negative
COVID-19 images. The second dataset was an extract
from the database of the Italian Society of Medical
and Interventional Radiology (SIRM). This dataset
contained 219 positive and 1341 negative COVID-19
images.

The experimental assessment of the quality of the
methods was carried out using the accuracy metric
and included a comparison of the proposed method
with a trained MobileNet deep neural network. The
proposed algorithm showed the best result, reaching
the accuracy rates of 0.9609 and 0.9809 on the first
and second datasets, respectively.

2.3. Analysis of Clinical Data
Finally, there are papers devoted to the analysis of

clinical data of hospitalized patients and the predic-
tion of COVID-19 mortality. In [3], the problem of
predicting 7-day survival for patients hospitalized with
COVID-19 was addressed. The proposed method was
based on the preselection of the most relevant features
by using LASSO regression and the prediction of
7-day survival based on Bayes’ theorem.

The dataset used contained the data of the patients
hospitalized between March 1 and May 6, 2020, to 13
New York health facilities. This dataset covered over
11000 patients with the average age of 65 years and the
overall 7-day survival rate of 89%. Based on electronic
health records, 42 features were extracted, including
the demographic, laboratory, and clinical data of the
patients.

The developed Northwell COVID-19 (NOCOS)
calculator was based on six most relevant features:
serum urea nitrogen, age, absolute neutrophil count,
erythrocyte distribution width, oxygen saturation, and
sodium; on the test sample, it reached an AUC value
of 0.86.

In [4], the problem of predicting the mortality risk
of COVID-19 was addressed. The proposed approach
was based on the generation of a set of Cox propor-
tional-hazards models on the subsamples grouped
with respect to location and age (groups of 18–44, 45–
74, and 75+ ages were considered). Based on the esti-
mated risks, a logistic regression model was also con-
structed for each location.

As a dataset, the data of the patients insured under
the National Health Insurance Scheme from June 7,
2020 to October 1, 2020 were used. This dataset cov-
ered more than 4.1 million patients across 259 U.S.
Counties, as well as more than 15 features, including
anamnesis, physical examination, and clinical data.
The proposed method reached an AUC value of 0.895
on the test sample.

In [5], the problem of predicting the mortality of
hospitalized patients diagnosed with COVID-19 was
PROGRAMMING AND COMPUTER SOFTWARE  Vol. 
addressed. The following machine learning models
were considered: logistic regression, support vector
machine, random forest, and XGBoost.

For research purposes, the data from the Mount
Sinai Health System (New York, USA) were used. The
dataset contained more than 3800 observations and
more than 20 features, including anamnesis (age, gen-
der, and chronic diseases) and physical examination
(saturation, arterial blood pressure, and body tem-
perature).

The best result in terms of the AUC metric was
shown by the XGBoost method (  AUC), which is
based on the idea of gradient boosting and focuses on
more difficult-to-predict subsets of training data. The
following features were considered the most signifi-
cant ones: saturation, age, and arterial blood pressure.

3. CONSTRUCTION AND INVESTIGATION
OF THE SOLUTION TO THE PROBLEM 

AT HAND
The problem of predicting the degree of lung dam-

age based on CT scans can be represented as two
binary classification problems:

(1) determining the probability of a mild damage
(CT 0–1): the patient does not require hospitalization
and can be treated at home;

(2) determining the probability of a severe damage
(CT 3–4): the patient should be immediately admitted
to the hospital for intensive treatment without an
intermediate visit to the CT center or clinic.

3.1. Specifics of the Solution
It should be noted that, in this work, we use real-

world medical data, which causes several significant
problems.

The first problem is the complexity of the data col-
lection procedure: to develop a complete treatment
regimen, it is required to process data from several
sources (CT center, polyclinic, hospital, and laborato-
ries for clinical analyzes and tests). These data sources
provide different amounts of data and can contain dif-
ferent input errors.

When aggregating data from different sources,
there can be data inconsistencies and missings in
patient characteristics. For correct operation of pre-
dictive models, it is required to preliminary eliminate
artifacts and inconsistencies, as well as investigate
approaches for processing missing values.

Due to different amounts of data provided by these
sources, there is also a problem of nonuniform filling
of certain features. For instance, features from CT
centers are filled for all patients because the target fea-
ture is the degree of lung damage on CT scans. In con-
trast, clinical or biochemical features may not be com-
plete (due to the absence of tests or loss of data) or be
outdated.

0.91
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In addition, there is a problem of data complete-
ness because access to certain data is limited due to the
complexity of the collection procedure. In particular,
the significant influence of the SpO2 feature (satura-
tion) on the course of the coronavirus disease was
noted in [6]. However, in open access, saturation data
are available only for a small number of patients. To
improve the filling of features, we can use additional
data sources or carry out approximation based on
available features.

Finally, there is a problem of an imbalanced dataset
with respect to the degree of lung damage on CT scans.
The dominant majority of patients have the mild
degree of damage (CT-1), whereas the critical degrees
(CT-3 and CT-4) are present in a small percentage of
samples. Thus, multi-class classification with class
balancing uses only a part of the available data. In this
paper, we develop binary classifiers of severe and mild
degrees, each of which is constructed based on sam-
ples balanced with respect to the degree of lung dam-
age.

This section describes some basic supervised
machine learning models [7, 8], in particular, binary
classifiers: random forest [9, 10], neural networks [11–
14], and gradient boosting [15, 16].

These models are selected due to the presence of
complex non-linear dependencies in data. However,
with the nonuniform filling of features in a dataset,
these basic models can exhibit instability and overfit-
ting.

To improve the stability of the predictions provided
by the basic models, as well as to take into account the
nonuniform filling of features, this section also con-
siders ensembles of the basic predictive models.

3.2. Random Forest (RF)

The RF algorithm proposed in [9] is based on the
idea of constructing an ensemble of decision trees [10]
and aggregating their predictions.

1. From the original sample,  bootstrap samples
(without replacement) are extracted. Each bootstrap
sample excludes, on average, 37% of the data, which
are called out-of-bag (OOB) data.

2. On each bootstrap sample, a decision tree is con-
structed, and  random features are selected at each
node of the tree to find the best split. The split that
maximizes the difference between child nodes (in par-
ticular, maximizes the logrank statistics) is selected.

3. Decision trees are constructed until the boot-
strap sample is exhausted.

Classification is carried out by voting: each tree of
the ensemble attributes an object to be classified to one
of the classes, and the class with the maximum num-
ber of votes wins.

N

P
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3.3. Neural Networks (NNs)

The NN algorithm proposed in [11] imitates the
operation of the human brain’s neural system. Using
neural networks, one can approximate any continuous
function as accurately as possible and imitate any con-
tinuous automaton.

A neuron is an information processing unit in the
neural network. This model has three main compo-
nents. The first one is a set of synapses xj connected to
neurons k, which are characterized by their weights

. The second component is an adder that sums
input signals weighted with respect to the correspond-
ing synapses of the neuron and introduces bias . The
third component is activation function , which is
applied to the resulting sum to generate the output sig-
nal  of the neuron.

Thus, in mathematical notation, the operation of
neuron k is described by the equation

(3.1)

Since the neuron model implements a function of
its inputs, neurons can be interconnected based on the
rules of superposition of functions to obtain more
complex models called perceptrons [12], or direct-
propagation artificial neural networks.

A multilayer perceptron [13] has several distinctive
features: each neuron has a non-linear activation
function and the whole network has one or more lay-
ers of hidden neurons.

To train a multilayer perceptron, the back-propa-
gation method is used, which is a learning technique
based on computing the gradient of an error function.
In the process of training, the weights of the neurons
at each layer of the neural network are adjusted taking
into account the signals received from the previous
layer, and the residual (deviation) of each layer is cal-
culated recursively from the last layer to the first one.

For binary classification, cross-entropy is most
commonly employed as an error function, and the
logistic function is used as an activation function [17].

To avoid overfitting, a regularization layer can be
added to the neural network architecture in order to
limit the size of the weights. In practice, dropout lay-
ers, which null some of the weights before proceeding
to the next layer, are most widely used. When adding
the dropout layer, the neural network is trained on
partially filled data to prevent the occurrence of global
dependencies on a small number of features. Com-
plete information on available features improves the
stability of the neural network architecture on real-
world data.
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3.4. Gradient Boosting Machines
Gradient boosting is an alternative approach to

constructing ensembles of decision trees, which was
presented in [15].

Unlike a random forest, the gradient boosting algo-
rithm is based on iterative training of the next decision
tree on the errors of the previous tree, rather than on
independent construction of decision trees and aver-
aging their predictions. Aggregation of tree predictions
is based on the weights computed when a new decision
tree is added to the ensemble.

The gradient boosting algorithm minimizes the
loss function based on which the ensemble error is
computed. By default, the logarithmic loss function
(log loss) [17] is used. Suppose that  is the
training set, L is the loss function, and M is the size of
the ensemble. The algorithm consists of the following
steps.

1. The model is initialized with a constant value α:

2. Pseudo-residuals are computed for all observa-
tions in the training set ( ):

3. Based on training sample , decision
tree  is constructed.

4. Weight  ( ) of the decision tree is com-
puted by solving the following optimization problem:

5. The trained tree with its weight is added to the
ensemble:

6. If the size of the ensemble m is not equal to M,
then step 2 is repeated.

7. The resulting model is denoted by .
Object classification is carried out by the composi-

tion of the responses from the ensemble models: each
decision tree  returns a real “degree” of class mem-
bership for the object, and the result  is obtained by
applying a threshold rule to the composition.

3.5. Random Forest and Neural Network Ensemble
To enable separate processing of features with dif-

ferent degrees of filling, we aggregate basic predictive
models. We use an ensemble of two predictive models:
the first model is trained on features with a large num-
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ber of missings, while the second model is trained on
well-filled features and the output of the first model.

The largest number of missings is found in the
group of laboratory test features. This group includes
all data of complete blood count (CBC) and biochem-
ical analyzes. We propose to train the neural network
based on laboratory features. The output of the model
is added to the group of the remaining features, based
on which the RF algorithm is trained.

The probabilistic prediction of the random forest is
used to evaluate the quality of the model. The choice
of the neural network for training on partially filled
features is due to the best approximation on a large
space of numerical features (supplemented with
binary features to indicate the presence of missing val-
ues) that can correlate with each other. When using
tree-based ensembles on features with missing values,
some of the features may not be used at all or may have
little significance.

3.6. Boosting Ensemble of Decision Trees:
Light Gradient Boosting Machine

The light gradient boosting machine (LGBM) [16]
is one of the most efficient implementations of the
gradient boosting procedure. Being an ensemble of
decision trees, LGBM allows one to evaluate the sig-
nificance of features from a trained model. Generally,
the significance indicates the usefulness of each fea-
ture for constructing decision trees in the model. The
more frequently the feature is used to make key deci-
sions, the higher its relative significance. The signifi-
cance is evaluated for individual decision trees; then,
feature values are averaged over all decision trees in the
model.

It should be noted that training in LGBM is carried
out only on the data that lead to a larger gradient,
which speeds up the algorithm and reduces its compu-
tational complexity.

In addition, LGBM allows one to process missings
in input features. For numerical features, the missing
values are attributed to the branch of the split that
minimizes the loss function best of all. For categorial
features, the missing values are used as an individual
category. In this case, there is no need to use an
ensemble of machine learning models that process
features with different degrees of filling.

3.7. Ensemble of Regularized Neural Networks
In its pure form, the back-propagation method

does not work well [11, 18]. There are problems of slow
convergence or divergence and stucking in local min-
ima. To stabilize the training process, we add proce-
dures of initialization and regularization of neural net-
work layers. With the sigmoid being used as the activa-
tion function of the neural network, the response of
the neural network can be interpreted as a probability.
48  No. 4  2022
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In addition, different initializations of
 lead to different results of network con-

vergence and different binarization thresholds for net-
work response. To improve the stability of predictions
provided by individual neural networks, an approach
to construction of neural network ensembles is pro-
posed. For an input observation, a set of responses is
computed over all trained neural networks; the
responses are summed and normalized. The resulting
response is taken as a response of the ensemble.

In addition, to control the training process, a train-
ing termination handler is used when the quality
begins to deteriorate. The maximum number of
epochs without parameter improvement is 10. More-
over, a handler is used to reduce the learning rate when
the quality metric deteriorates.

3.8. Calibration of Results and Selection of Thresholds
In the process of classification, it is often required

not only to predict the label of a class but also to find
the probability of the corresponding label. This prob-
ability determines the confidence in the prediction.

The probability distribution can be adjusted for
better correspondence to the expected distribution
observed in the data. This adjustment is called model
calibration [19, 20] and is used to reduce the responses
of predictive models to a probabilistic scale. This is
important for interpreting predictions, as well as for
making decisions about the implementation of models
and analyzing their performance.

Suppose that yi is the reference probability of
observation xi and  is the response of the model.
The goal of the calibration method is to construct
adjusted response .

In this paper, we use Platt calibration [21], which
fits the logistic regression model to the estimates pro-
vided by the classifier:

(3.2)

Parameters a and b are determined by the maxi-
mum likelihood method on a holdout sample. Platt
calibration is most efficient when the distortion in the
predicted probabilities is sigmoidal.

There is also a problem of attributing observations
to classes based on the predicted probability. In fact,
not all constructed models have a threshold of 0.5 for
output probabilities, and weights of errors can differ
when “underestimating” or “overestimating” the
result. In this case, the “underestimation” errors are
more critical than the “overestimation” errors, and it
is required to maximize the recall or sensitivity met-
rics.

Experts can set the minimum permissible recall
based on which thresholds that maximize precision
are selected. This approach allows one to use many
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individual thresholds in various use cases; however, it
is not a unified approach to computing thresholds.

4. EXPERIMENTAL RESEARCH
4.1. Description of Performance Metrics

To assess the performance of the predictive mod-
els, we use the ROC-AUC metric [22].

The ROC-curve plots the ratio between the per-
centage of objects from the total number of correctly
classified feature carriers and the percentage of objects
from the total number of objects misclassified as fea-
ture carriers while varying the threshold of the deci-
sion rule (type I errors).

The area under the ROC-curve (AUC) takes values
from 0 to 1 and is interpreted as a probability that the
classifier assigns a larger weight to a randomly selected
positive observation rather than to a randomly selected
negative observation.

4.2. Description of the Datasets
In this work, we use two different datasets.
The first dataset includes municipal medical data

on inpatients and outpatients with COVID-19 (Mos-
cow) for the period from March 2020 to February
2021. These data have six sources. The structure of the
dataset and the content of the sources are shown in
Table 1. All data sources have a common patient ID.
This dataset is sufficiently complete to be used for
training and testing the predictive models.

The second dataset obtained from a Moscow city
hospital consists of 95 observations: patient ID, anam-
nesis features (gender, age, and chronic diseases),
examination features (severity, saturation, respiratory
rate, dyspnea, weakness, congestion, body tempera-
ture, presence and type of cough), and laboratory test
results (PCR, WBC, PDV, MON, GRA, LYM, PLT,
HGB, RBC, MPV, HCT, and RDW).

Due to the small size and obvious bias to the CT-1
degree, this dataset can only be used as a test sample to
assess the quality of the models.

4.3. Data Preparation
Before constructing predictive models, it is

required to process the source medical data on
COVID-19 patients to sort out incorrect instances and
normalize the feature values to the same scales, as well
as to find and process artifacts, outliers, and inconsis-
tent data.

In this paper, we propose the following algorithm
for dataset generation based on a variety of sources.

For each observation from the CT center, the near-
est (within a week window) medical tests are found.
Each patient is assigned a list of tests based on his or
her unique ID. The tests are filtered and sorted with
ND COMPUTER SOFTWARE  Vol. 48  No. 4  2022
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Table 1. Structure of the municipal dataset

Source Volume Features Analysis result Add. features

CT center data
303628

severity, respiratory rate, 
body temperature, pres-
ence and type of cough

CT scan time, CT degree of 
damage, CT result, presence of 
pneumonia

main diagnosis, con-
comitant diagnoses

Outpatient test data 43348273 – test, conduction time, collection 
time, test result, reference values

medical investigation, 
units of measurement

PCR and IFA test data

4466407

date of birth, gender type of test, name and code of 
diagnosis, test conduction time, 
dates of receipt and return of 
test results, test result

data collection center, 
branch, laboratory

Saturation data 661353 – conduction time, saturation 
value

–

Data on inpatients
880352

date of birth, gender, risk 
group

severity, ICU, ventilator, 
ECMO

hospitalization date, 
reason for hospitaliza-
tion

Data on deceased 
patients 48415 date of birth, gender date of death, cause of death, 

code of death
association between 
death and COVID-19
respect to the proximity to the date of the CT proce-
dure. The nearest tests with three features (test value,
reference values, and test date) are selected.

Sets of CBC tests and most-filled biochemical tests
are considered: ALT, albumin, AST, total bilirubin,
direct bilirubin, total potassium, creatinine, lactate
dehydrogenase, urea, total sodium, total protein,
chlorine, alkaline phosphatase, and relative number of
normoblasts.

The source dataset is filtered based on these tests.
Thus, a test result (rather than an analysis result) is
considered because it can be obtained from several
sources. In addition, tests from different sources are
combined into a single test feature and the units of
measurement are unified.

The most-filled features among similar tests are
extracted. For instance, in the case of platelets, there
are many features upon combining tests from different
sources: total platelet volume (thrombocrit, PCT),
platelet count, mean platelet volume, and platelet dis-
tribution width. These features correlate with each
other; hence, when forming the feature space, the
most-filled feature is selected.

The resulting dataset is supplemented with the fol-
lowing tests: PCR, IFA, and saturation (for each
patient, the nearest (within a week window) tests are
extracted). This dataset is also supplemented with fea-
tures of chronic diseases. Each patient is assigned a list
of chronic diagnoses in the format of ICD-10 codes:
coronary heart disease (I11, I20, I24, I25, and I51),
arterial hypertension (I10, O10-13, G97, I27, K76,
P29, and I15), diabetes mellitus (G63, E10-14, H36,
M14, G59, E23, N08, and O24), and obesity (E66).

4.3.1. Unification of feature values. This subsection
considers the problem of normalizing the feature val-
PROGRAMMING AND COMPUTER SOFTWARE  Vol. 
ues to common scales and dictionaries taking into
account the reference values.

When processing the features of the municipal
dataset, we composed several rules for unification of
feature values. The values that fall outside the permis-
sible limits of a feature are eliminated. For instance,
the CT data contained the body temperature values
3.0, 3.6, and 3.8, as well as the respiratory rate values
0, 1, and above 150.

To unify units of measurement for each feature
value, we propose an algorithm for reducing these
units of measurement to the most frequent (target)
one. First, the prefixes and postfixes of the target unit
of measurement are extracted. Then, for the other
units of measurement, the distance to the target one is
calculated. The prefixes and postfixes “m, mk, n, ml,
k, and M,” as well as power exponents, are processed.
Non-unifiable units of measurement are eliminated.

To unify categorial features, dictionaries of all pos-
sible categories were composed.

To unify continuous features, insignificant symbols
are eliminated with conversion to real values (in the
case of a multiple value, splitting by separators is car-
ried out and the first value is selected).

To unify reference values of features, reference val-
ues of two main types are used: interval  and
half-intervals < x and >y. All reference values are cast
to these types; otherwise, they are considered invalid.

To unify the results of the IFA test, four features are
generated: two real values IGG, IGM and two binary
indicators IGG > 10, IGM > 2.0.

4.3.2. Processing anomalous values. This section
discusses the problem of finding, eliminating, or cor-
recting artifacts, outliers, and inconsistent data.

− −x y
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Table 2. Correspondence between the CT result and the CT
degree of damage

Zero Mild Moderate Severe Critical

0 536 1423 409 78 0
1 510 157298 2578 126 7
2 48 3208 56516 463 8
3 12 402 1285 15814 9
4 3 30 37 169 1196
When processing the features of the municipal
dataset, inconsistent data of several types were found.
The inconsistencies were found both by analyzing the
features and with the help of experts.

First, there is inconsistency between the fields
“time of body temperature measurement during CT
scan” and “time of CT scan:” there can be several days
difference between these dates. In 299 thousand
observations, this problem is not observed. However,
more than 3800 observations have a non-zero distance
between the dates, in particular, one day has 2142
observations, more than two days have 1694 observa-
tions, and more than seven days have 763 observa-
tions. The maximum time difference is 176 days. In
this work, the distance of more than seven days is con-
sidered incorrect: these observations are eliminated
from the dataset.

Second, there is inconsistency between the fields
“CT degree of damage” and “CT result.” In accor-
dance with the description of the source dataset, the
CT category and the CT degree of damage are
matched as follows: CT-0 is zero damage, CT-1 is mild
damage, CT-2 is moderate damage, CT-3 is severe
damage, and CT-4 is critical damage. However, in the
dataset, this matching is valid only for 167 thousand
observations. The complete match between the CT
category and the CT degree of damage is presented in
Table 2. In addition, 61 thousand observations do not
include the degree of damage. In this work, the patient
is considered to have a CT-N degree of damage if his
or her “CT result” is CT-N and the “CT degree of
damage” is not lower than CT-N or is not indicated.

Third, based on expert assessment, an inconsis-
tency due to irreducible units of measurement was
found. In the features that represent the absolute
number of eosinophils, basophils, monocytes, granu-
locytes, lymphocytes, and neutrophils, there are two
categories of values that indicate their composition in
percentage and quantitative terms. These categories
cannot be converted to one another by means of gen-
eral unit conversion. For correct conversion, it is
required to multiply the percentage composition by
the white blood count (WBC). If WBC is absent, then
the composition value is assumed to be a gap.

Finally, based on expert assessment, an inconsis-
tency due to the absence of units of measurement for
PROGRAMMING A
the RDW, PDW, and D-dimer features was found.
To eliminate this problem, we decided to analyze the
reference values of the features.

For RDW (and PDW), the following rule is
defined: if the right-hand reference boundary is below
20 or the notation contains a comma, then the value is
represented as RDW-CV (and PDW-CV) and is mea-
sured in %; otherwise, it is represented as RDW-SD
(and PDW-SD) and is measured in femtoliters. The
units of measurement are matched by formula RDW –

CV =  × 100, where MCV is the mean cell

volume (or by formula PDW – CV =  ×

100, where MPV is the mean platelet volume).
For the D-dimer feature, the following rule is

defined: if the right-hand reference boundary is below
one, then the value is measured in µg/ml; otherwise, it
is measured in ng/ml. The units of measurement are
matched as follows: 1 µg/ml = 1000 ng/ml.

4.3.3. Dataset enrichment. In this subsection, we
consider the problem of expanding the feature space
by including information about the dates of analyzes
and examinations.

As mentioned above, when forming the dataset,
observations with CT scans are enriched with clinical
analyses, PCR results, IFA results, and saturation,
which are obtained over a weekly period from the date
of the CT scan.

In practice, analysis data sometimes prove out-
dated. To control outdated data, two features are
added: the CBC test date and the biochemical analysis
date. Based on them, the number of days between the
analyzes and the CT date is calculated.

Thus, we can filter the input data based on their rel-
evance: if the number of days is less than seven, then
the feature is used in the predictive model.

In addition, for each feature N from the dataset, a
feature  is generated to indicate the presence
of missings in the original feature (“1” if the feature
had a missing value, “0” otherwise).

4.3.4. Imputation of the saturation index. In this sub-
section, we consider the problem of imputation of the
saturation index when assessing the severity of the
examination result with recalculation based on the
NEWS2 scale.

When predicting the expected CT degree of dam-
age, one of the most important features is the satura-
tion index (blood oxygen level in percentage terms).
However, in the generated dataset, the saturation fea-
ture is filled only in 103 thousand observations (out of
299 thousand).

To solve this problem, we use the national early
warning score (NEWS2) [23], which was proposed in
2020 by the Royal College of Physicians to assess the
severity of the coronavirus disease.

−RDW SD
MCV

−PDW SD
MPV

_none N
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Fig. 2. Distribution of CT results for the municipal dataset.
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based on the weighting scheme with respect to the
filled features of respiratory rate, body temperature,
and severity level.

Thus, to each observation, one saturation point is
assigned if saturation is present or expected saturation
points are given if it is absent.

4.3.5. Sample generation.Thus, taking into account
the data preparation procedure described above, the
dataset with 299 792 observations is formed based on
the municipal data sources. The distribution of the
target field “CT result” is shown in Fig. 2.

The CBC feature is filled in 176 354 observations
(by this, we mean the presence of the value of the
hematocrit feature). The biochemical analysis is filled
in 176 866 observations (by this, we mean the presence
of the “C-reactive protein” value). Both the CBC fea-
ture and the biochemical feature are simultaneously
filled in 151 532 observations.

Once the initial samples for the CT 01-234 and CT
012-34 classifiers are generated, the missings are
imputed by the median value of the feature on the ini-
tial samples. In addition, class balancing is carried out:
a smaller class of size N is completely included in the
sample, while from a larger class, N observations are
randomly selected.

Based on the resulting dataset, the training, valida-
tion, and test samples are generated.

For the CT 01-234 classifier, the total number of
observations is 67648 with the proportion of observa-
tions in the training, validation, and test sets being
54118/6765/6765.

For the CT 012-34 classifier, the total number of
observations is 12 576 with the proportion of observa-
tions in the training, validation, and test sets being
10062/1257/1257.

In addition, we consider two approaches to the
generation of test, validation, and training samples. In
the case of a randomized partitioning, 80% of the
observations from the original sample are randomly
included in the training sample, while the remaining
observations are equally split between the test and val-
idation samples.

In the case of a time-based partitioning, the first
10% of the observations (for the entire period) with the
maximum CT time are included in the test sample,
while the next 10% of the observations are attributed to
the validation sample. The remaining observations are
included in the training sample.

_ 2b spo _ 2bw spo
−97 2_ 2 =

2
SpOb spo

_ 2bw spo
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4.4. Setting up the Experiments
First, the dataset is preprocessed, and the feature

spaces and target variables are generated for the CT
01-234 and CT 012-34 classification.

Then, the features are post-processed, missings are
imputed based on the sample-median values, and
class balancing is carried out. The test, validation, and
training samples are generated based on the datasets
formed.

The following binary classifiers are trained with
parameter selection on the validation set: neural net-
work (NN), neural network with random forest
(NN + RF), NN ensemble, LGBM with missings,
and LGBM without missings (missing values are
imputed with the median value over the original clas-
sifier sample).

For the constructed models, a prediction on the
test sample is computed; then, their prediction quality
is estimated using the ROC AUC metric.

4.5. Result Tables
Table 3 contains the values of the ROC AUC met-

ric on the randomized and time-based test sets for the
CT 01-234 and CT 012-34 classification problems.

According to the result table, the LGBM model
without missings and with Platt calibration shows the
best ROC AUC value for these two classification
problems on the randomized and time-based test sets.

In addition, the model was tested on the data pro-
vided by the Moscow city hospital. For the CT 01-234
classification problem, ROC AUC is 0.8805; for the
CT 012-34 classification problem, ROC AUC is
0.9311. The corresponding ROC curves are shown in
Fig. 3.

5. IMPLEMENTATION
Based on the results of theoretical and experimen-

tal investigations, the web service called CT Calculator
was developed. It enables the express assessment of
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Table 3. Results of the CT 01-234 and CT 012-34 classification

Randomized sample Time-based sample

CT 01-234 CT 012-34 CT 01-234 CT 012-34

NN on laboratory features 0.7954 0.8401 0.7899 0.7984
NN on blood tests + RF + Platt calibration 0.8842 0.9227 0.8317 0.8737
NN ensemble 0.9153 0.9327 0.8729 0.8904
LGBM without missings + Platt calibration 0.9173 0.9455 0.8743 0.8988
LGBM with missings + Platt calibration 0.9170 0.9453 0.8742 0.8987

Fig. 3. ROC curves for the CT 01-234 and CT 012-34 classifiers on the test dataset.

ROC AUC = 0.88050
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lung tissue damage in COVID-19 patients without
using computed tomography of the chest, based on the
physical and laboratory analyzes of the patient. This
service makes it possible to predict the probability of
the mild and severe degrees of lung damage.

5.1. Architecture of the Solution

The software implementation of CT Calculator is
based on two independent parts: external environment
and internal environment (the whole architecture is
shown in Fig. 4).

The external environment is used to fine-tune pre-
dictive models. It receives the source dataset as an
input, pre-processes the features, and generates the
training and test samples. Based on the generated
samples, the training procedure is carried out and the
best predictive model is selected based on the ROC
AUC metric. The test sample is used to generate
reports on the predictive models and compute the
thresholds. The external environment outputs the file
of the best predictive model, as well as contextual
information (the dataset-median values and standard-
ization coefficients for the features).

The internal environment is designed to run the
web service. It receives the files generated by the exter-
nal environment as an input, as well as loads and ini-
tializes the models. A predictive model of each type
generates an environment that includes the model,
handler function for observation features, and logger.
PROGRAMMING A
The user can specify a particular prediction environ-
ment.

The internal environment also includes a Waitress-
based WSGI server [24] that runs the web application.
The web application processes incoming requests and
makes predictions based on the previously trained
model.

When deploying the service, it is only required to
transfer the program code of the internal environ-
ment, as well as the files generated by the external
environment. This approach uses a small amount of
RAM (because the source dataset is processed before
deploying the service) and does not require transfer-
ring the dataset to the external environment due to
information security reasons.

Upon launching the predictive model, the user
receives a unique request ID. In the case of an incor-
rect result, the user can send the request ID to the
developer to analyze the log data associated with this
request (in particular, perform a consistency check).
If the request is correct, then the event is labeled and
added to the test set.

Logged events are also used to generate operational
statistics for the CT Calculator service. This statistics
was used to investigate the source data and was
reported in a paper published on the official website of
the Mayor of Moscow.3

3 Russian doctors used CT calculator 10000 times to diagnose
COVID-19. https://www.mos.ru/news/item/86015073/
ND COMPUTER SOFTWARE  Vol. 48  No. 4  2022
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Fig. 4. Architecture of CT Calculator.
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5.2. Interaction Methods

To interact with CT Calculator, the REST archi-
tectural style [25] operating over the HTTP protocol is
used. Each operation has its own HTTP method: GET
obtains data, POST creates new data, PUT updates
(modifies) data, and DELETE eliminates data.

A JSON [26] array is sent as a data packet to a spec-
ified address of the service. On the side of CT Calcu-
lator, a handler function is triggered, and a prediction
in a certain format is returned depending on the sent
data and the current request.

5.3. Integrating the Service into an External 
Organization Environment Using Docker

The service allows the user to predict the degree of
lung damage based on the course of the disease. For
this purpose, a web form or REST API tools can be
used.

However, in this case, requests are sent to a single
service and request logs are consolidated in a single
repository. To support several independent services
with local storages, we use Docker software [27, 28].

Docker is designed to automate the deployment
and control of applications in environments that sup-
port application containerization. It also enables a
more efficient use of system resources, rapid deploy-
ment of software products, as well as their scaling and
porting to other environments while guaranteeing the
stability of their operation.

The basic operating principle of Docker is applica-
tion containerization. This type of virtualization
allows software to be packaged in isolated container
environments. Each of the environments contains all
necessary elements to run the application. This allows
PROGRAMMING AND COMPUTER SOFTWARE  Vol. 
a large number of containers to be simultaneously run
on the same host.

Docker consists of several components. The first
one is the server that initializes the daemon used to
control and modify containers, images, and volumes.
The daemon controls Docker objects (networks,
repositories, images, and containers) and can commu-
nicate with other daemons to manage Docker services.
The second component is the client that allows the
user to interact with the server by sending commands.
The third component is the REST API mechanism
that enables communication between the Docker cli-
ent and the Docker daemon.

Docker has a fairly simple syntax and is compatible
with all versions of the Linux and Windows operating
systems.

Thus, using Docker, CT Calculator can be pack-
aged in a container and deployed in an external orga-
nization. Access to this container is also provided
through the REST API.

In December 2020, CT Calculator was integrated
into the Moscow medical information system, and
doctors from all regions of the Russian Federation, as
well as ordinary users, received free access to it.

6. CONCLUSIONS

In this paper, we have considered the problem of
predicting the degree of lung damage in COVID-19
patients.

Computed tomography (CT) is important for
determining adequate treatment strategies. With the
mild degree of damage (CT 0-1), the patient does not
require hospitalization and can be treated at home;
with the severe degree of damage (CT 3-4), the patient
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must be hospitalized for intensive treatment without
an intermediate visit to a CT center or clinic.

The frequent use of CT scans also has certain dis-
advantages, e.g., the risk of creating artificial epidemic
foci, inefficient operation of ambulance services, and
high cost of the CT procedure.

As an alternative diagnostic tool, we have proposed
the predictive models for assessing the mild (CT 0-1)
and severe (CT 3-4) degrees of lung damage in
COVID-19 patients based on the examination, clini-
cal, and biochemical features.

It should be noted that, in this work, we have used
real-world medical data, which causes several signifi-
cant problems: the complexity and limitations of the
procedure for collecting data from multiple sources,
nonuniform filling of certain features, input errors,
and data inconsistencies.

As basic machine learning models, we have consid-
ered the random forest method, neural networks, gra-
dient boosting, and ensembles of basic models that can
process features with different degrees of filling. Platt
calibration has been used to reduce the responses of
the predictive models to the probabilistic scale.

Based on the results of the experimental investiga-
tion, the LGBM method with missing values imputa-
tion has showed the best performance in terms of the
ROC AUC metric.

The proposed predictive models have been imple-
mented as the CT Calculator web service. In Decem-
ber 2020, this service was integrated into the Moscow
medical information system. The service enables quick
medical decision making and can reduce the number
of examinations for the patient (reduce radiation
exposure). Moreover, the service makes it possible to
reduce the workload on the medical equipment of CT
centers and can be employed in the regions where
access to CT scanners is limited or this equipment is
not available.
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