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Abstract—We approximate the front of a flat sub-Riemannian structure on the Engel dis-
tribution in a neighborhood of a non-subanalytic singularity by the front of a control system
integrable in elementary functions. As a corollary, we find the asymptotics of the exponential
map of a flat sub-Riemannian structure on the Engel distribution.
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1. INTRODUCTION

The sphere of radius τ > 0 of a flat sub-Riemannian structure on the Engel distribution is a
compact singular hypersurface in R

4. It is the boundary of the set reachable from the origin in time τ
for a control system in R

4 whose admissible velocities at every point form a two-dimensional disk:

ẋ = u1, ẏ = u2, ż = u1
y

2
− u2

x

2
, ẇ = u1

y2

2
, u21 + u22 ≤ 1. (1.1)

In what follows we call this sphere the Engel sphere.
The Engel sphere is a subset of the image in R

4 of the exponential map of a three-dimensional
cylinder (product of a circle and a plane). The exponential map is analytic; explicit formulas in
terms of Jacobi elliptic functions and elliptic integrals for this map were found in [4]. The closure
of the image of the exponential map is called the Engel front.

The control system (1.1), as well as the Engel sphere and front, are symmetric with respect to
the involutions

(x, y, z, w) �→ (x,−y,−z, w), (x, y, z, w) �→ (−x,−y, z,−w). (1.2)

Moreover, the linear transformation

(t, x, y, z, w) �→ (τt, τx, τy, τ2z, τ3w) (1.3)

preserves the control system (1.1) and maps the Engel sphere (front) of unit radius to the Engel
sphere (front) of radius τ .

The sphere is not subanalytic at the points x = ±τ , y = z = w = 0 (which we call poles).
The preimage of each pole under the exponential map is a (noncompact) straight line in the two-
dimensional generator of the cylinder.

The absence of subanalyticity at the poles follows from the results of [2], where this is proved for
a sphere of a flat sub-Riemannian structure on the Martinet distribution in the three-dimensional
space; the latter sphere is the boundary of the projection of the Engel sphere along the z axis.
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Similarly, the boundary of the projection of the Engel sphere along the w axis is a sphere of a flat
sub-Riemannian structure on the contact distribution, which was studied in [12]. These facts about
the boundaries of the two projections of the Engel sphere are discussed in more detail in Section 3
in terms of the exponential map and the Hamiltonian of the Pontryagin maximum principle.

The Engel sphere was studied in [4–7, 11].

Results of the study. In the present paper we analyze a reduced control system (2.1), which
differs from the original system (1.1) by the narrower set of admissible velocities: instead of the
disk u21 + u22 ≤ 1 centered at zero, we consider the set (2u1 − 1)2 + 2u22 ≤ 1 bounded by an ellipse
with center at the point u1 = 1/2, u2 = 0 and semiaxes 1/2 and 1/

√
2. This ellipse is tangent to

the unit circle at the point u1 = 1, u2 = 0 and passes through the point u1 = u2 = 0.
Recall that the reachable set of a control system consists of points that can be reached along

admissible trajectories in time at most τ > 0. According to Filippov’s theorem (see [3, Sect. 10.3])
and Krener’s theorem (see [3, Sect. 8.1]), the reachable sets of the control systems (1.1) and (2.1)
are compact and coincide with the closures of their interiors. The trajectories along which one can
reach the boundary of the reachable set from a given point in time τ are said to be geometrically
optimal.

The admissible trajectories satisfying the Pontryagin maximum principle for a time-optimal
problem are called extremals. Any geometrically optimal trajectory is an extremal; the converse is
not true in general. The points that can be reached from a given point in time τ along extremals
form a front. The front contains all points of the boundary of the reachable set, but, generally
speaking, is not exhausted by them.

It turns out that in contrast to the original system (1.1), the extremals of the reduced control
system (2.1) can be expressed in terms of elementary functions; therefore, the front Φτ and the
reachable set Aτ of this system can be analyzed in great detail. Explicit formulas for the extremals
of the reduced control system (2.1) are obtained in Theorem 1, and those for the front Φτ and the
boundary of the reachable set ∂Aτ ⊂ Φτ , in Corollaries 1 and 2.

In Theorem 2, we find the asymptotics of the exponential map in elementary functions at all
points of the preimage of the pole x = 1, y = z = w = 0 of the Engel sphere of unit radius. (Due to
the second symmetry in (1.2), it suffices to consider one pole.) Explicit formulas for the exponential
map that contain Jacobi elliptic functions and elliptic integrals were found in [4].

Informally speaking, Theorem 3 states that the front of the reduced control system (2.1) touches
the Engel front in the neighborhood of the pole x = τ , y = z = w = 0. The exact statement of the
theorem is explained below. Conjecture 1 strengthens Theorem 3, but remains unproven.

All cross-sections x = τ(1 − ε) for 0 < ε < 1 of the boundary ∂Aτ of the reachable set of
the reduced control system (2.1) coincide with a surface S up to invertible linear transformations
preserving the coordinate axes. The surface S is defined by formulas (2.6) and is depicted in Fig. 1
from two different angles. It is smooth outside the edge that is clearly seen in Fig. 1a. For ε = 0
and 1, the cross-sections under consideration degenerate into the origin.

The surface S is symmetric with respect to the vertical axis w. After the smooth change (2.7)
of the coordinate w, it becomes symmetric with respect to both vertical coordinate planes, albeit
strongly distorted. The resulting transformed surface is shown in Fig. 2 from two different angles.
Despite strong distortions, the new coordinates are much more convenient: the surface S looks
much clearer in these coordinates.

All cross-sections x = τ(1 − ε) with 0 < ε < 1 of the front of the reduced control system
coincide with a surface F up to invertible linear transformations preserving the coordinate axes.
The surface F is defined by formulas (2.5) and consists of the surface S and the interior, which is
difficult to represent in the coordinates (y, z, w). It is better to use again the change (2.7): Figure 3
shows the interior of the transformed surface F from four different angles (the two top views are from
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Fig. 1. Cross-section of the reachable set of the reduced system.
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Fig. 2. Transformed cross-section of the reachable set.

the same angles as in Fig. 2). Figure 4 demonstrates the upper part (i.e., the part distinguished by
the condition w′ ≥ 0 on the new coordinate (2.7)) of the transformed surface F from two different
angles.

The surface F has a rather complicated structure. Namely, it contains self-intersection edges,
cuspidal edges, and swallowtails. These singularities accumulate at the origin. The self-intersection
edges lie on the vertical coordinate planes x = 0 and z = 0 and terminate at the points of swallow-
tails. The cuspidal edges are of two types: smooth closed curves and astroid-like curves that have
semicubic singularities at the points of swallowtails. As we approach the origin, cuspidal edges of
different types alternate, although this is difficult to see in the figures because smooth curves lie
very close to the astroids.

Informally speaking, the singularities of F are arranged in the same way as on the front of a
typical sub-Riemannian structure on the contact distribution (see [1, 9]).

Theorem 3 and Conjecture 1 state that the surface F approximates the vertical cross-sections of
the Engel front in the following sense. Denote by FE the lower limit as ε → 0+ of the image of the
cross-section x = τ(1− ε) of the Engel front at time τ under the quasihomogeneous dilation (4.1).
(The lower limit is the set of those points for each of which the distance to the image of the cross-
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Fig. 3. Interior of the transformed cross-section of the front.

section tends to zero as ε → 0+.) The conjecture states that FE = F . To date, this conjecture has
not been proved, but, according to Theorem 3, we have FE ⊃ F .

At first glance, the conjecture is false: it is well known that the cross-sections of the Engel sphere
and the front have a more complicated structure than the surfaces S and F , respectively. However,
this fact does not disprove our conjecture, which states that passing to the limit simplifies everything.
In other words, the complicated part has a higher order of smallness and vanishes in the limit.

In addition, our conjecture is consistent with the results obtained in [8] for the limit cross-sections
of the sphere and the front of a flat sub-Riemannian structure on the Martinet distribution. The
point is that the Martinet sphere is the boundary of the projection of the Engel sphere along the
z axis; therefore, the boundary of the projection of the surface S (Fig. 1a) is the limit cross-section
of the Martinet sphere obtained in [8]. According to the results of [8], in the cross-section of the
Martinet front, there is indeed another interior part with singularities, which is not seen in the limit
cross-section because it turns into the origin when we pass to the limit.
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Fig. 4. Upper part of the transformed cross-section of the front.

However, a similar conjecture in the Martinet case has not been rigorously proved in [8] either,
but the vanishing interior was analyzed and shown to be of higher order of smallness. Most likely
a similar phenomenon occurs for the Engel front, and the structure of its cross-section close to the
pole is similar to the structure of the front of a typical sub-Riemannian structure on the contact
distribution. When we pass to the limit, a half of the cross-section becomes smooth.

Motivation of the study. The planes containing the disks of admissible velocities of the
control system (1.1) form the Engel distribution generated by the pair of vector fields

v1 = ∂x +
y

2
∂z +

y2

2
∂w, v2 = ∂y −

x

2
∂z.

According to the Engel theorem, a generic smooth distribution of two-dimensional planes in R
4 in

some local coordinates in the neighborhood of almost any point is defined by the vector fields v1
and v2. In this sense, the Engel distribution is universal, just as the contact distribution in R

3.
The integral curves of the vector field v1 are called abnormal geodesics; they are geodesics

for any sub-Riemannian metric on the Engel distribution. The sub-Riemannian distance has very
complicated and mysterious singularities along abnormal geodesics.

There are many sub-Riemannian structures on the Engel distribution that are not equivalent
to each other with respect to changes of smooth local coordinates; just as Riemannian structures,
they differ in functional invariants. Nevertheless, all of them have isometric tangent spaces in the
Gromov–Hausdorff sense (see [10] for details). This tangent space is called a flat sub-Riemannian
structure on the Engel distribution; it is the sphere and the front of this structure for which we
analyze the asymptotics near abnormal geodesics in this paper, since the poles of the Engel sphere
are precisely the points of its intersection with abnormal geodesics emanating from the center of
the sphere.

2. FRONT OF THE REDUCED CONTROL SYSTEM

In this section, we present formulas for the extremals, for the boundary of the reachable set,
and for the front of the reduced control system

ẋ = u1, ẏ = u2, ż = u1
y

2
− u2

x

2
, ẇ = u1

y2

2
, (2u1 − 1)2 + 2u22 ≤ 1, (2.1)
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which differs from the original system (1.1) in that it has a narrower set of admissible velocities:
instead of the disk u21 + u22 ≤ 1 centered at zero, we consider a set bounded by an ellipse with center
at the point u1 = 1/2, u2 = 0 and semiaxes 1/2 and 1/

√
2. This ellipse is tangent to the unit circle

at the point u1 = 1, u2 = 0. It turns out that in contrast to the original system (1.1), the extremals
of the reduced control system can be expressed in terms of elementary functions.

Introduce the notation

γβ = 1− β

3!
+

β2

5!
− β3

7!
+ . . . =

sin
√
β√

β
=

sinh
√
−β√

−β
,

δβ = 1− β

2!
+

β2

4!
− β3

6!
+ . . . = cos

√
β = cosh

√
−β

for analytic functions of the parameter β.

Theorem 1. The space–time curves defined in the coordinates t, x, y, z, w by the equations

t = x+ xT
(2)
αx2(θ, cx), y = xY

(1)
αx2(θ, cx), z = x2Z

(1)
αx2(θ, cx), w = x3W

(2)
αx2(θ, cx), (2.2)

with parameters θ, c, α ∈ R, are extremals of the reduced control system (2.1) that emanate from the
origin. Here

T
(2)
β (θ, b) = θ2

γβδβ + 1

4
− θb

γ2β
2

+ b2
1− γβδβ

4β
, T

(2)
0 (θ, b) =

θ2

2
− θb

2
+

b2

6
,

Y
(1)
β (θ, b) = θγβ + b

δβ − 1

β
, Y

(1)
0 (θ, b) = θ − b

2
,

Z
(1)
β (θ, b) = θ

(
1− δβ

β
− γβ

2

)
+ b

2γβ − δβ − 1

2β
, Z

(1)
0 (θ, b) =

b

12
,

W
(2)
β (θ, b) = θ2

1− γβδβ
4β

− θb
(1− δβ)

2

2β2
+ b2

γβδβ − 4γβ + 3

4β2
, W

(2)
0 (θ, b) =

θ2

6
− θb

8
+

b2

40

are homogeneous polynomials in (θ, b) with coefficients analytically depending on β whose degrees
are indicated in parentheses.

Moreover, the admissible trajectories of the form

x = ϕ(t), y = z = w = 0, ϕ ∈ C(R), ϕ(0) = 0, 0 ≤ ϕ̇(t) ≤ 1, (2.3)

where the last condition holds for almost all t ∈ R, are also extremals emanating from the origin.
The reduced control system (2.1) has no other nonextendable extremals.

Remark 1. The extremals (2.2) are the projections of the solutions of the Hamilton equations
with the Hamiltonian H (5.1) defined by the Pontryagin maximum principle. On the extremals (2.3),
the Hamiltonian H loses its smoothness; therefore, these extremals are said to be singular. It is
interesting that all singular extremals (2.3) of the reduced control system (2.1) are geometrically
optimal. This observation follows immediately from Corollary 2 to Theorem 1.

Corollary 1. The front Φτ of the reduced control system (2.1) is the closure of the three-
dimensional singular hypersurface

Φ◦
τ =

{
y =

√
x(τ − x)Y(β) cosψ, z =

√
x3(τ − x)Z(β) sinψ,

w = x2(τ − x)
(
W0(β) cos

2 ψ +W1(β) cosψ sinψ +W2(β) sin
2 ψ

)}
(2.4)
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defined by equations with parameters ψ ∈ R/2πZ and β ∈ R, where

Y(β) =
2γβ/4√
1 + γβ

, Z(β) =
2(γβ/4 − δβ/4)

β

√
β

1− γβ
, W0(β) =

2− γβ − δβ
β(1 + γβ)

,

W1(β) =
2(2− βγβ − 2δβ)

β2

√
β

1− γ2β
, W2(β) =

2− 3γβ + δβ
β(1− γβ)

are analytic functions of β with

Y(0) =
√
2, Z(0) =

1√
6
, W0(0) =

1

3
, W1(0) =

1

2
√
3
, W2(0) =

1

10
.

The complement Φτ \Φ◦
τ is the interval 0 < x < τ of the abscissa.

Remark 2. The hypersurface Φ◦
τ can also be defined by the equations

y =
√

x(τ − x)Y
(0)
β (θ, b), z =

√
x3(τ − x)Z

(0)
β (θ, b), w = x2(τ − x)W

(0)
β (θ, b)

with parameters θ, b, β ∈ R, where

Y
(0)
β (θ, b) =

Y
(1)
β (θ, b)

√
T
(2)
β (θ, b)

, Z
(0)
β (θ, b) =

Z
(1)
β (θ, b)

√
T
(2)
β (θ, b)

, W
(0)
β (θ, b) =

W
(2)
β (θ, b)

T
(2)
β (θ, b)

are analytic functions defined for (θ, b) 
= 0 that do not change under the homogeneous dilations
(θ, b) �→ (λθ, λb) with λ > 0.

Corollary 2. The boundary ∂Aτ ⊂ Φτ of the reachable set of the reduced control system (2.1)
is the complement of the interior of the front Φτ to the whole Φτ ; this interior is distinguished from
the hypersurface Φ◦

τ by the condition β > 4π2.
All cross-sections of the fronts Φτ by the hyperplanes x = τ(1− ε), where τ > 0 and 0 < ε < 1,

coincide, up to linear transformations preserving the y, z, and w coordinate axes, with the surface

F =
{
y = Y(β) cosψ, z = Z(β) sinψ,

w = W0(β) cos
2 ψ +W1(β) cosψ sinψ +W2(β) sin

2 ψ
∣
∣ ψ ∈ R/2πZ, β ∈ R

}
∪O, (2.5)

which lies in R
3 = {(y, z, w)}; here O = (0, 0, 0).

Similarly, all cross-sections of the boundaries ∂Aτ by the hyperplanes x = τ(1− ε), where τ > 0
and 0 < ε < 1, coincide, up to linear transformations preserving the y, z, and w coordinate axes,
with the surface S ⊂ F ,

S =
{
y = Y(β) cosψ, z = Z(β) sinψ,

w = W0(β) cos
2 ψ +W1(β) cosψ sinψ +W2(β) sin

2 ψ
∣
∣ ψ ∈ R/2πZ, β ≤ 4π2

}
∪O, (2.6)

obtained by removing the interior, defined by the condition β > 4π2, from the surface F .
Remark 3. The projection of the cross-section β = β0 of the surface F along the w axis is an

ellipse if Y(β0) 
= 0 and Z(β0) 
= 0. This condition is satisfied for all β0 < 4π2. For β0 = 4π2, the
ellipse turns into a line segment since Y(4π2) = 0 and Z(4π2) 
= 0.

Remark 4. To analyze the surface F , it is convenient to pass from w to the coordinate

w′ = w − y2

6
− yz

2
− 3z2

5
, (2.7)
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in which the formula for F is simpler:

w′ = W ′
0(β) cos

2 ψ +W ′
2(β) sin

2 ψ, (2.8)

where

W ′
0(β) =

2− 3γβ + δβ
3β(1 + γβ)

, W ′
2(β) =

β(4 + 9γβ − δβ)− 24(1 − δβ)

5β2(1− γβ)
,

with W ′
0(0) = W ′

2(0) = 0.

3. EXPONENTIAL MAP AND ITS ASYMPTOTICS

The exponential map (in unit time) for the control system (1.1) is constructed as follows. Con-
sider the Hamiltonian

HE = max
u2
1+u2

2≤1
(u1P + u2Q) =

√
P 2 +Q2, P = px + pz

y

2
+ pw

y2

2
, Q = py − pz

x

2
, (3.1)

defined by the Pontryagin maximum principle applied to the system, and introduce a three-
dimensional cylinder lying on the hypersurface {HE = 1},

C =
{
p2x + p2y = 1, x = y = z = w = 0

}
⊂ T ∗

R
4,

with an angular coordinate θ ∈ R/2πZ and coordinates c, α ∈ R on the generators:

px = cos θ, py = sin θ, pz = c, pw = α.

For every initial momentum on the cylinder C, consider the corresponding trajectory of the Hamilton
equations with Hamiltonian HE. By definition, the exponential map

Exp: C → R
4

sends the initial momentum on C to a point in R
4 through which this trajectory passes at time t = 1.

The Engel front at time τ = 1 is the closure of the image of the exponential map Exp, and the
sub-Riemannian sphere of unit radius is a subset of the front. Explicit formulas for the exponential
map in terms of the Jacobi elliptic functions and elliptic integrals were found in [4].

The hyperplane pz = 0 consists of phase curves of the Hamiltonian vector field, because the
momentum pz is a first integral of this field. If we restrict the exponential map Exp to the two-
dimensional cylinder C ∩ {pz = 0} with coordinates (θ, α) and then project it to R

3 along the
z coordinate, we obtain the exponential map of the control system

ẋ = u1, ẏ = u2, ẇ = u1
y2

2
, u21 + u22 ≤ 1;

the boundary of the reachable set of this system is a sphere of the flat sub-Riemannian structure
on the Martinet distribution, which was studied in [2, 8].

The hyperplane pw = 0 also consists of phase curves of the Hamiltonian vector field, because
the momentum pw is a first integral of the field as well. If we restrict the exponential map Exp to
the two-dimensional cylinder C ∩ {pw = 0} with coordinates (θ, c) and then project it to R

3 along
the w coordinate, we obtain the exponential map of the control system

ẋ = u1, ẏ = u2, ż = u1
y

2
− u2

x

2
, u21 + u22 ≤ 1;

the boundary of the reachable set of this system is a sphere of the flat sub-Riemannian structure
on the contact distribution, which was studied in [12].
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The preimage of the pole x = 1, y = z = w = 0 under the exponential map is the straight line
θ = 0, c = 0 in the generator of the cylinder, and the preimage of the pole x = −1, y = z = w = 0
is the straight line θ = π, c = 0.

The exponential map is invariant under the involutions

(θ, c, α) �→ (−θ,−c, α), (x, y, z, w) �→ (x,−y,−z, w),

(θ, c, α) �→ (θ + π, c,−α), (x, y, z, w) �→ (−x,−y, z,−w).
(3.2)

In particular, when expressed in coordinates,

E(θ, c, α) =
(
Xα(θ, c), Yα(θ, c), Zα(θ, c),Wα(θ, c)

)
∈ R

4,

Yα and Zα turn out to be odd functions with respect to the involution (θ, c) �→ (−θ,−c), while Xα

and Wα, even functions.

Theorem 2. As (θ, c) → 0 for a fixed parameter α, the following asymptotic expansions hold :

Xα(θ, c) = 1− T (2)
α (θ, c) +O(r4), Yα(θ, c) = Y (1)

α (θ, c) +O(r3),

Zα(θ, c) = Z(1)
α (θ, c) +O(r3), Wα(θ, c) = W (2)

α (θ, c) +O(r4),

where r =
√
θ2 + c2 and the O-constants depend on α.

4. ASYMPTOTICS OF THE ENGEL FRONT AND SPHERE NEAR THE POLE

In this section we formulate Theorem 3 and Conjecture 1, which state that the front of the
reduced control system (2.1) approximates the Engel front near its pole x = τ , y = z = w = 0.

Denote by FE the lower limit as ε → 0+ of the image of the cross-section of the Engel front at
time τ by the hyperplane x = τ(1− ε) under the quasihomogeneous dilation

(y, z, w) �→
(

y

τ
√
ε
,

z

τ2
√
ε
,
w

τ3ε

)
. (4.1)

The lower limit is the set of those points for each of which the distance to the image of the cross-
section tends to zero as ε → 0+.

Remark 5. According to Corollary 1 to Theorem 1, a similar construction for the reduced
control system (2.1) gives the surface F . Namely, the lower limit as ε → 0+ of the image of
the cross-section of the front Φτ by the hyperplane x = τ(1 − ε) under the quasihomogeneous
dilation (4.1) coincides with the surface F .

Theorem 3. FE ⊃ F .

Conjecture 1. FE = F .

5. PROOFS

Proof of Theorem 1. The Pontryagin maximum principle applied to the reduced control
system (2.1) yields the following Hamiltonian, which is homogeneous in the momenta:

H = max
(2u1−1)2+2u2

2≤1
(u1P + u2Q) =

P +
√

P 2 + 2Q2

2
,

P = px + pz
y

2
+ pw

y2

2
, Q = py − pz

x

2
.

(5.1)
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This function is nonnegative and smooth for (P,Q) 
= (0, 0). The projections of the solutions
of the corresponding Hamilton equations to the configuration space are extremals of the reduced
system (2.1).

First, we consider the solutions lying at the level H = 1. This is a smooth hypersurface in T ∗
R
4

defined by the equation P = 1−Q2/2. At all points of the hypersurface, we have

∂H

∂P
=

1

1 +Q2/2
,

∂H

∂Q
=

Q

1 +Q2/2
.

Using these relations, we write down the Hamilton equations with the coordinate x as an indepen-
dent variable:

dt

dx
= 1 +

Q2

2
,

dy

dx
= Q,

dz

dx
= −xQ

2
+

y

2
,

dw

dx
=

y2

2
,

dpx
dx

=
pzQ

2
,

dpy
dx

= −
( pz
2

+ pwy
)
,

dpz
dx

= 0,
dpw
dx

= 0.

The solutions of these equations with the initial conditions

t = x = y = z = w = 0, px = 1− θ2

2
, py = θ, pz = c, pw = α (5.2)

are given by formulas (2.2) (we omit the tedious verification of this fact).
If H = 0, then P ≤ 0 and Q = 0. At the points with P < 0 and Q = 0, the Hamilton equations

ẋ = ẏ = ż = ẇ = ṗx = ṗy = ṗz = ṗw = 0

become trivial and yield extremals of the form (2.3) with ϕ ≡ 0.
It remains to consider the case P = Q = 0. In this case the Hamiltonian is not smooth, and

the maximum principle for the reduced control system (2.1) yields the following equations for the
momenta:

ṗx =
u2pz
2

, ṗy = −u1

( pz
2

+ pwy
)
, ṗz = 0, ṗw = 0.

Taking into account (2.1), we obtain

Ṗ = u2(pz + pwy) = 0, Q̇ = −u1(pz + pwy) = 0.

For u1 = u2 = 0, we again obtain an extremal of the form (2.3) with ϕ ≡ 0. Let

pz + pwy = 0, (5.3)

which, together with the expressions (5.1) for P and Q, yields the initial conditions

px(0) = py(0) = pz(0) = 0, pw(0) 
= 0.

(The last condition follows from the maximum principle.) Hence, pz = 0 and pw = const 
= 0, since
ṗz = ṗw = 0. Therefore, (5.3) implies the equality y = 0. From conditions (2.1) we conclude that
all extremals along which P = Q = 0 have the form (2.3). �

Proof of Corollary 1. The front consists of the ends of the extremals described in Theorem 1.
Changing the parameters in formulas (2.2),

θ = ξδβ/4 + η
γβ/4

2
, c = −ξ

βγβ/4

2x
+ η

δβ/4

x
, α =

β

x2
,
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we obtain

t = x+ xξ2
1 + γβ

4
+ xη2

1− γβ
4β

, y = xξγβ/4, z = x2η
γβ/4 − δβ/4

β
,

w = x3ξ2
2− γβ − δβ

4β
+ x3ξη

2− βγβ − 2δβ
2β2

+ x3η2
2− 3γβ + δβ

4β2
.

The coefficients 1 + γβ and (1 − γβ)/β in the equation t = τ are positive analytic functions of the
parameter β ∈ R, and the formulas

ξ = 2

√
τ − x

x(1 + γβ)
cosψ, η = 2

√
(τ − x)β

x(1− γβ)
sinψ

parameterize the solutions of the equation t = τ . Substituting them into the expressions for y, z,
and w, we obtain all points of the hypersurface Φ◦

τ except the origin x = y = z = w = 0, which
belongs to the front Φτ since it is the endpoint of the extremal of the form (2.3) with ϕ ≡ 0. Thus,
Φ◦
τ ⊂ Φτ .

The functions Y, Z, W0, W1, and W2 tend to zero as β → ∞. Therefore, the closure of the
hypersurface Φ◦

τ also contains the interval 0 < x < τ of the abscissa, whose endpoints belong to Φ◦
τ .

However, all extremals of the form (2.3) end precisely at the points of the interval 0 ≤ x ≤ τ of the
abscissa. �

Proof of Corollary 2. In the front Φτ , consider the complement Στ of its part distinguished
from Φ◦

τ by the condition β > 4π2. Let us prove that ∂Aτ = Στ .
The coefficients of the first powers of θ in the expressions for T

(2)
4π2 , Y

(1)
4π2 , Z

(1)
4π2 , and W

(2)
4π2 in

Theorem 1 vanish. Therefore, the trajectories (2.2) with opposite values of θ intersect each other if
x2 = 4π2/α. Hence, no trajectory with θ 
= 0 and α > 0 is geometrically optimal for x2 > 4π2/α.

The function Y
(1)
β (θ, b) from Theorem 1 and all three of its first derivatives vanish if β = 4π2 and

θ = 0. Hence, the derivatives of the coordinate y = xY
(1)
αx2(θ, cx) of a point on the trajectory (2.2)

with respect to x, α, θ, and c vanish for α > 0, θ = 0, and x = xα. Therefore, for x2 = 4π2/α,
the point on the trajectory with θ = 0 and α > 0 is conjugate to the origin, and the trajectory in
question is not geometrically optimal for x2 > 4π2/α.

Thus, all trajectories with α > 0 are not geometrically optimal for x2 > 4π2/α. Since β = αx2,
this last condition is nothing else but β > 4π2. Therefore, ∂Aτ ⊂ Στ , and the complement Φτ \ Στ

is contained in the interior of the reachable set Aτ .
The following idea was communicated to the author by L. V. Lokutsievskiy. By Filippov’s

theorem (see [3, Sect. 10.3]) and Krener’s theorem (see [3, Sect. 8.1]), the reachable set Aτ is
compact and is the closure of its interior. Therefore, its boundary ∂Aτ divides R

4 into two (or
more) connected components. However, no proper subset of Στ has such a property, as demonstrated
below. Hence, ∂Aτ = Στ .

Let us show that the complement of any proper subset of Στ to R
4 is connected.

First, we notice that the surface S defined by (2.6) is the union of the graphs w = s±(y, z) of
two continuous functions s± defined on the disk y2 + z2 ≤ 1. These functions coincide on the circle
y2 + z2 = 1, while for y2 + z2 < 1 the inequality s−(y, z) < s+(y, z) holds. It is more convenient
to prove the statement by passing to the coordinate w′ defined by formula (2.7) in Remark 4; the
validity of the statement is confirmed by Fig. 2. The formal argument is as follows.

In the interval [0, 4π2], the functions Y and Z are strictly decreasing, with Y(0) = Z(0) = 1,
Y(4π2) = 0, and Z(4π2) > 0. Therefore, a unique ellipse y = Y(β) cosψ, z = Z(β) sinψ with
β ∈ [0, 4π2] passes through any point of the disk y2 + z2 ≤ 1. Substituting the corresponding values
of the parameters β and ψ into (2.8), we obtain the value of the function s′+(y, z). This function
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is continuous in the disk y2 + z2 ≤ 1, vanishes on its boundary, since W ′
0(0) = W ′

2(0) = 0, and is
positive in its interior, since W ′

0(β) > 0 and W ′
2(β) > 0 if β > 0.

On the ray (−∞, 0], the functions Y and Z are strictly increasing, tend to zero as β → −∞,
and Y(0) = Z(0) = 1. Therefore, a unique ellipse y = Y(β) cosψ, z = Z(β) sinψ with β ∈ (−∞, 0]
passes through any point of the punctured disk 0 < y2 + z2 ≤ 1. Substituting the corresponding
values of the parameters β and ψ into (2.8), we obtain the value of the function s′−(y, z). In addition,
let s′−(0, 0) = 0. The function s− is continuous in the disk y2 + z2 ≤ 1, since W0 and W2 tend to
zero as β → −∞. The function s− vanishes on the circle x2 + y2 = 1, since W ′

0(0) = W ′
2(0) = 0,

and is negative in the punctured disk 0 < y2 + z2 < 1, since W ′
0(β) < 0 and W ′

2(β) < 0 if β < 0.
When we pass from the coordinate w′ to the coordinate w, the graphs w′ = s′±(y, z) of the

functions s′± transform into the graphs w = s±(y, z) of the functions s± with the above properties.
By Corollary 1, the cross-section of the hypersurface Στ by the vertical hyperplane x = const is
obtained from the surface S by the linear transformation

(y, z, w) �→
(√

x(τ − x)y,
√

x3(τ − x)z, x2(τ − x)w
)
.

Hence, the hypersurface Στ is the union of the graphs w = σ±(x, y, z) of two continuous functions σ±
defined on the closure of the connected bounded domain

U =

{
y2

x(τ − x)
+

z2

x3(τ − x)
< 1, 0 < x < τ

}

by the formulas

σ±(x, y, z) = x2(τ − x)s±

(
y

√
x(τ − x)

,
z

√
x3(τ − x)

)
, σ±(0, 0, 0) = 0.

These functions coincide on the boundary of the domain U , while in the domain itself the inequality
σ−(x, y, z) < σ+(x, y, z) holds. Therefore, the complement of any proper subset of Στ to R

4 is
connected. �

Proof of the formulas in Remark 2. The functions Y
(0)
β , Z(0)

β , and W
(0)
β are defined for

(θ, b) 
= 0, since T
(2)
β is a positive definite quadratic form for all β ∈ R, which follows from its

explicit formula given in Theorem 1.
Making the change of parameters b = cx and β = αx2 in (2.2), we obtain

t = x+ xT
(2)
β (θ, b), y = xY

(1)
β (θ, b), z = x2Z

(1)
β (θ, b), w = x3W

(2)
β (θ, b). (5.4)

Let τ > x > 0 and (θ∗, b∗) 
= 0. For any β ∈ R, the equation

τ = x+ xT
(2)
β (λθ∗, λb∗)

has a unique positive root

λ =

√
τ − x

xT
(2)
β (θ∗, b∗)

,

since T
(2)
β (λθ∗, λb∗) = λ2T

(2)
β (θ∗, b∗). The substitution of θ = λθ∗ and b = λb∗ into formulas (5.4)

yields a point in Φτ , and its coordinates satisfy the relations of Corollary 1 for θ = θ∗ and b = b∗,
because

Y
(1)
β (λθ∗, λb∗) = λY

(1)
β (θ∗, b∗), Z

(1)
β (λθ∗, λb∗) = λZ

(1)
β (θ∗, b∗),

W
(2)
β (λθ∗, λb∗) = λ2W

(2)
β (θ∗, b∗). �
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Proof of Theorem 2. Let us fix a value of the parameter α and consider the solution of the
Hamilton equations with Hamiltonian HE defined by (3.1) and the initial conditions

t = x = y = z = w = 0, px = cos θ, py = sin θ, pz = c, pw = α (5.5)

for small θ and c. This solution is approximated up to O(r3) by the solution (2.2) with the initial
conditions (5.2).

Indeed, if θ = c = 0, then the corresponding trajectory x = t, y = 0, z = 0, w = 0, px = 1,
py = 0, pz = 0, pw = α is a solution of the Hamilton equations with either Hamiltonian, HE and H.
(The latter Hamiltonian is defined by (5.1).) Along this trajectory we have P ≡ 1 and Q ≡ 0, and at
all such points the Hamiltonians HE and H coincide with each other together with their derivatives
up to the third order inclusive, since the circle and ellipse (bounding the sets of admissible velocities
of the control systems (1.1) and (2.1), respectively) have the same second and third derivatives at
the tangency point. Hence, the right-hand sides of the Hamilton equations coincide with each other
together with their derivatives up to the second order inclusive. The distance between the initial
conditions (5.5) and (5.2) is an infinitesimal O(r3).

Now, let us write the Hamilton equations with Hamiltonian H, this time with the independent
variable t:

dx

dt
=

1

1 +Q2/2
,

dy

dt
=

Q

1 +Q2/2
,

dz

dt
=

−xQ/2 + y/2

1 +Q2/2
,

dw

dt
=

y2/2

1 +Q2/2
,

dpx
dt

=
pzQ/2

1 +Q2/2
,

dpy
dt

=
−(pz/2 + pwy)

1 +Q2/2
,

dpz
dt

= 0,
dpw
dt

= 0.

Up to O(r3), we obtain

dx

dt
= 1− Q2

2
,

dy

dt
= Q,

dz

dt
= − tQ

2
+

y

2
,

dw

dt
=

y2

2
,

dpx
dt

=
pzQ

2
,

dpy
dt

= −
( pz
2

+ pwy
)
,

dpz
dt

= 0,
dpw
dt

= 0,

since x = t+O(r2) due to the invariance under the involution (3.2). Using the solution (2.2) of the
Hamilton equations with Hamiltonian H given in the proof of Theorem 1, we obtain

x = t− tT
(2)
αt2

(θ, ct), y = tY
(1)
αt2

(θ, ct), z = t2Z
(1)
αt2

(θ, ct), w = t3W
(2)
αt2

(θ, ct).

For t = 1, we obtain the asymptotics of Theorem 2 up to O(r3). For the coordinates x and w,
the accuracy of the above expansions increases to O(r4) since they are even with respect to the
substitution (θ, c) �→ −(θ, c), which follows from the invariance under the involution (3.2). �

Proof of Theorem 3. Due to the invariance with respect to the quasihomogeneous transfor-
mations (1.3), it suffices to prove Theorem 3 for τ = 1. To this end, we apply the already proved
Theorem 2.

Let us fix a point (y∗, z∗, w∗) on the surface F defined by equations (2.5). Suppose that θ∗
and c∗ satisfy the conditions

T (2)
α (θ∗, c∗) = 1, Y (1)

α (θ∗, c∗) = y∗, Z(1)
α (θ∗, c∗) = z∗, W (2)

α (θ∗, c∗) = w∗. (5.6)

(Such numbers certainly exist since the functions under consideration are homogeneous.) By The-
orem 2, we have

Xα(λθ∗, λc∗) = 1− T (2)
α (λθ∗, λc∗) +O(λ4) = 1− λ2 +O(λ4)
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as λ → 0+ in view of (5.6) and the homogeneity of T (2)
α . Therefore, for small ε > 0, the equation

Xα(λθ∗, λc∗) = 1− ε

has a solution λε =
√
ε(1 +O(ε)) as ε → 0+. Indeed, if λ2

ε +O(λ4
ε) = ε, then λ2

ε = ε+O(ε2).
Now, from Theorem 2 we obtain

yε = Yα(λεθ∗, λεc∗) = Y (1)
α (λεθ∗, λεc∗) +O(λ3

ε) = λεY
(1)
α (θ∗, c∗) +O(λ3

ε) =
√
ε
(
y∗ +O(ε)

)
,

zε = Zα(λεθ∗, λεc∗) = Z(1)
α (λεθ∗, λεc∗) +O(λ3

ε) = λεZ
1
α(θ∗, c∗) +O(λ3

ε) =
√
ε
(
z∗ +O(ε)

)
,

wε = Wα(λεθ∗, λεc∗) = W (2)
α (λεθ∗, λεc∗) +O(λ4

ε) = λ2
εW

2
α(θ∗, c∗) +O(λ4

ε) = ε
(
w∗ +O(ε)

)
.

Thus, the point (yε, zε, wε) lies on the cross-section x = 1− ε of the Engel front at time 1, and

lim
ε→0+

(
yε√
ε
,
zε√
ε
,
wε

ε

)
= (y∗, z∗, w∗) ∈ F .

Therefore, FE ⊃ F . �
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