Skip to main content
Log in

Study of cylindrically symmetric solutions in an \(f(R)\) gravity background

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We investigate static cylindrically symmetric solutions of the Weyl and Gödel space–times in the framework of modified \(f(R)\) gravity. With this aim, we consider the modified higher-order theory of gravity based on nonconformal invariant gravitational waves. From the modified Einstein equations, we derive two exact solutions of the Weyl space–time and find one exact and one numerical solution of the Gödel space–time. In particular, we obtain a family of exact solutions with a constant scalar curvature \(R\) depending on arbitrary constants for both space–times. It is interesting that the second solution for the Weyl metric has a nonconstant Ricci scalar. We find that the result obtained by solving the higher-order theory of gravity is similar to the result for the Einstein field equations with a cosmological constant. Moreover, we graphically study the role of the metric coefficients in both space–times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. A. G. Riess et al., “Type Ia supernova discoveries at \(z>1\) from the Hubble Space Telescope: Evidence for past deceleration and constraints on dark energy evolution,” Astrophys. J., 607, 665–687 (2004).

    Article  ADS  Google Scholar 

  2. A. H. Buchdahl, “Non-linear Lagrangians and cosmological theory,” Mon. Not. R. Astron. Soc., 150, 1–8 (1970).

    Article  ADS  Google Scholar 

  3. S. Capozziello, V. F. Cardone, and M. Francaviglia, “\(f(R)\) theories of gravity in the Palatini approach matched with observations,” Gen. Rel. Gravit., 38, 711–734 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  4. A. Azadi, D. Momeni, and M. Nouri-Zonoz, “Cylinderical solutions in metric \(f(R)\) gravity,” Phys. Lett. B, 670, 210–214 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  5. S. Nojiri and S. D. Odintsov, “Unified cosmic history in modified gravity: From \(F(R)\) theory to Lorentz non-invariant models,” Phys. Rep., 505, 59–144 (2011); arXiv:1011.0544v4 [gr-qc] (2010).

    Article  ADS  MathSciNet  Google Scholar 

  6. S. Nojiri, S. D. Odintsov, and V. K. Oikonomou, “Modified gravity theories on a nutshell: Inflation, bounce, and late-time evolution,” Phys. Rep., 692, 1–104 (2017); arXiv:1705.11098v2 [gr-qc] (2017).

    Article  ADS  MathSciNet  Google Scholar 

  7. S. N. Pandey and A. M. Mishra, “Solution of an \(f(R)\) theory of gravitation in cylindrical symmetric Godel space–time,” in: Proc. World Congress on Engineering – 2016, Vol. 1 (Lect. Notes Engin. Comp. Sci., Vol. 2223, S. I. Ao, L. Gelman, D. WL Hukins, A. Hunter, and A. M. Korsunsky, eds.), Newswood Limited, London (2016), pp. 84–87.

    Google Scholar 

  8. M. J. S. Houndjo, D. Momeni, and R. Myrzakulov, “Cylindrical solutions in modified \(f(T)\) gravity,” Internat. J. Modern Phys. D, 21, 1250093 (2012); arXiv:1206.3938v2 [physics.gen-ph] (2012).

    Article  ADS  MathSciNet  Google Scholar 

  9. M. J. S. Houndjo, M. E. Rodrigues, D. Momeni, and R. Myrzakulov, “Exploring cylindrical solutions in modified \(f(G)\) gravity,” Canad. J. Phys., 92, 1528–1540 (2014); arXiv:1301.4642v1 [gr-qc] (2013).

    Article  ADS  Google Scholar 

  10. C. S. Trendafilova and S. A. Fulling, “Static solutions of Einstein’s equations with cylindrical symmetry,” Eur. J. Phys., 32, 1663–1677 (2011).

    Article  Google Scholar 

  11. M. Sharif and A. Siddiqa, “Models of collapsing and expanding cylindrical source in \(f(R,T)\) theory,” Adv. High Energy Phys., 2019, 8702795 (2019).

    MATH  Google Scholar 

  12. D. Momeni, K. Myrzakulov, R. Myrzakulov, and M. Raza, “Cylindrical solutions in mimetic gravity,” Eur. Phys. J. C, 76, 301 (2016).

    Article  ADS  Google Scholar 

  13. J. L. Said, J. Sultana, and K. Z. Adami, “Exact static cylindrical black hole solution to conformal Weyl gravity,” Phys. Rev. D, 85, 104054 (2012); arXiv:1201.0860v3 [gr-qc] (2012).

    Article  ADS  Google Scholar 

  14. M. T. Rincon-Ramirez and L. Castañeda, “Study of cylindrically symmetric solutions in metric \(f(R)\) gravity with constant \(R\),” arXiv:1305.1652v2 [gr-qc] (2013).

  15. I. Brito, J. Carot, F. C. Mena, and E. G. L. R. Vaz, “Cylindrically symmetric static solutions of the Einstein field equations for elastic matter,” J. Math. Phys., 53, 122504 (2012); arXiv:1403.5684v1 [gr-qc] (2014).

    Article  ADS  MathSciNet  Google Scholar 

  16. M. F. Shamir and Z. Raza, “Cylindrically symmetric solutions in \(f(R,T)\) gravity,” Astrophys. Space Sci., 356, 111–118 (2015).

    Article  ADS  Google Scholar 

  17. S. N. Pandey, “Higher-order theory of gravitation,” Internat. J. Theor. Phys., 27, 695–702 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  18. N. Pandey, Gravitation, Phoenix, New Delhi (1999).

    MATH  Google Scholar 

  19. L. Carlitz, “The inverse of the error function,” Pacific J. Math., 13, 459–470 (1963).

    Article  MathSciNet  Google Scholar 

  20. L. P. Grishchuk, “Gravitational waves in the cosmos and the laboratory,” Sov. Phys. Usp., 20, 319–334 (1977).

    Article  ADS  Google Scholar 

  21. K. Gödel, “An example of a new type of cosmological solutions of Einstein’s field equations of gravitation,” Rev. Modern Phys., 21, 447–450 (1949).

    Article  ADS  MathSciNet  Google Scholar 

  22. R. Gleiser, M. Gürses, A. Karasu, and Ö. Sarıoğlu, “Closed time like curves and geodesics of Gödel-type metrics,” Class. Quantum Grav., 23, 2653–2663 (2006); arXiv:gr-qc/0512037v2 (2005).

    Article  ADS  Google Scholar 

  23. K. A. Bronnikov, “Static fluid cylinders and plane layers in general relativity,” J. Phys. A: Math. Gen., 12, 201–207 (1979).

    Article  ADS  Google Scholar 

  24. K. A. Bronnikov and G. N. Shikin, “Cylindrically symmetric solitons with nonlinear self-gravitating scalar fields,” Grav. Cosmol., 7, 231–240 (2001); arXiv:gr-qc/0101086v1v1 (2001).

    ADS  MathSciNet  MATH  Google Scholar 

  25. H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers, and E. Herlt, Exact Solutions of Einstein’s Field Equations, Cambridge Univ. Press, Cambridge (2009).

    MATH  Google Scholar 

  26. D. Dominici, “Asymptotic analysis of the derivatives of the inverse error function,” arXiv:math/0607230v2 (2006).

  27. M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Natl. Bur. Stds. Appl. Math. Ser., Vol. 55), Dover, New York (1972).

    MATH  Google Scholar 

  28. A. J. Accioly and G. E. A. Matsas, “Are there causal vacuum solutions with the symmetries of the Gödel universe in higher-derivative gravity?” Phys. Rev. D, 38, 1083–1086 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  29. G. Cognola, E. Elizalde, S. Nojiri, S. D. Odintsov, and S. Zerbini, “One-loop \(f(R)\) gravity in de Sitter universe,” JCAP, 0502, 010 (2005); arXiv:hep-th/0501096v3 (2005).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. Shamir.

Ethics declarations

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farooq, M.A., Shamir, M.F. Study of cylindrically symmetric solutions in an \(f(R)\) gravity background. Theor Math Phys 206, 109–118 (2021). https://doi.org/10.1134/S0040577921010074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577921010074

Keywords

Navigation