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TEICHMÜLLER’S MODULSATZ AND THE
VARIATION OF THE DIRICHLET INTEGRAL

V. N. Dubinin UDC 517.956.224

Abstract—We show that changing the level curve of a harmonic function with the classical Hadamard
variation with a small parameter entails a change in the Dirichlet integral of the function which is
quadratic in the parameter. As a corollary, we supplement the well-known theorem of Teichmüller about
the sum of moduli of doubly connected domains into which an annulus is subdivided by a continuum
that differs little from a concentric circle.
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1. Introduction

Consider the annulus B = {z : s < |z| < t} with 0 < s < t < ∞ and denote by modD the modulus
of a doubly connected domain D ⊂ C; in particular,

modB =
1

2π
log

t

s
.

Take some continuum γ that separates B into disjoint doubly connected domains B1 and B2. Grötzsch’s
Lemma shows that

Δ(B, γ) := modB −modB1 −modB2 (1)

is nonnegative and vanishes only in the case that γ = {z : |z| = r} for an arbitrary r with s < r < t.
In 1938 Teichmüller established [1] the following: If

Δ(B, γ) ≤ δ

for δ > 0 sufficiently small then there is C < ∞, independent of B and δ, such that

sup{|z| : z ∈ γ}
inf{|z| : z ∈ γ} ≤ 1 + C

√
δ log

1

δ
.

This proposition is known in the literature as Teichmüller’s Modulsatz; see [2, Proposition 9.5; 3, Corol-
lary 2.34; 4, Theorem 4.1], as well as [5, Chapter VI, Section 6, “narrow Modulsatz”]). Teichmüller
pointed out [1] the accuracy of his estimate understood in the sense that for every ε > 0 there exists
a continuum γε avoiding some concentric circle in B by ε, while

Δ(B, γε) ≤ δ(ε), δ(ε) � ε2

log 1
ε

as ε → 0.

Bertilsson gave [3, Example 2.26] an explicit form of such continuum in the “dual problem”; see also
[4, Chapter V, Exercise 10]. The factor 1/

(
log 1

ε

)
appears because one point of the continuum γ(ε)

approaches the circle as ε → 0 one order in ε slower than the others. It is natural to suppose that a more
uniform convergence of γε to the circle would ensure that

Δ(B, γε) = O(ε2) as ε → 0. (2)

Original article submitted September 24, 2023; revised September 24, 2023; accepted November 28, 2023.

289



Indeed, [6] observes that (2) holds whenever we obtain γε from a concentric circle via some Hadamard
deformation, defined in general as follows. Take a smooth curve γ in C and a real twice continuously
differentiable function ϕ on γ. Given a sufficiently small ε > 0, define the “deformation” of γ as

δn(z) := εϕ(z) +O(ε2) (3)

such that γ goes into the curve γε = {zε = z+ δn(z)i dz/|dz| : z ∈ γ}. Here δn(z) is a twice continuously

differentiable function on γ and O(ε2) admits on γ a uniform estimate.1) In the case (3) we can prove (2)
using Hadamard’s variational formula for the Dirichlet integral [7, (A3.11); 6, (2.2)]. In [6] we used (2)
substantially to obtain a fine property of the Green’s energy of a discrete charge.

In this note we give a direct proof of a more general result than (2). Moreover, we pass from doubly
connected domains to arbitrary ones. In this regard, instead of comparing the moduli of annular domains,
we study the behavior of the Dirichlet integral of a harmonic of function when its level curves changes
via the deformation in (3). Now we proceed to precise statements.

Given a finite domain B in the plane C whose boundary consists of analytic arcs and closed analytic
Jordan curves, consider a nonconstant function u continuous on B, harmonic on B, and satisfying the
boundary conditions of the mixed Dirichlet problem [4, Theorem B.4]. More exactly, on some closed
arcs (curves) Γ1 of the boundary of B it takes constant values, while on the remaining parts Γ2 of the
boundary of B the normal derivative ∂u/∂n of u vanishes; the latter set can be empty. Consider some
collection {γ} consisting of finitely many disjoint closed Jordan arcs or closed Jordan curves in B lying

on (possibly distinct) level curves of u2). To each curve γ ∈ {γ} associate the curve γε with ε > 0
obtained from γ via the deformation in (3), where ϕ is a real twice continuously differentiable function
defined on the union

⋃
γ, while ϕ �≡ 0 on

⋃
γ and the support of δn(z) avoids the endpoints of γ ∈ {γ}.

Henceforth ∪ and Σ stand for the union and the sum over all curves γ ∈ {γ}. Assume that ε is so small
that all curves γε are pairwise disjoint and lie in B. Suppose that the function uε is continuous on B,
harmonic on Bε := B \

⋃
γε, satisfies the boundary conditions for u on ∂B, and on each curve γε takes

the constant value equal to the value of u on the curve γ corresponding under the deformation in (3).
Put

I(v,Ω) =

∫∫
Ω

|∇v|2 dxdy.

Theorem 1. Under the above conditions we have the asymptotic equality

I(uε, Bε)− I(u,B) � ε2 as ε → 0. (4)

Observe that the left-hand side in (4) is nonnegative by the Dirichlet principle.
The proof of (4) rests substantially on Kellogg’s results about the behavior of partial derivatives of

a harmonic function on the boundary of its domain of definition [8].
We confine ourselves to the case that u and uε are potential functions for generalized condensers [9].

It is clear from the proof of Theorem 1 that (4) also holds if we replace the boundary conditions for these
functions by the existence and continuity of their first partial derivatives in a neighborhood of ∂B.

In connection with (2) and (4), the assumption comes up that

Δ(B, γε) � ε2 as ε → 0 (5)

is valid. However, Δ(B, γε) = 0 for δn(z) ≡ cε, where c is a constant. The author is aware of examples
of concrete deformations (3) for which (5) indeed holds. Possibly, δn(z) ≡ cε is the unique case for which
this fails.

The final part of this article gives a corollary to Theorem 1 in the case that B is a circular annulus,
see the inequality in (9). We show that this corollary also yields (2).

1)In contrast to the original [7, § 3], we introduce in (3) the obvious additional term O(ε2) useful in applications.
2)This means curves on which u takes constant values.

290



2. Proof of Theorem 1

We may assume that the boundary of B consists of analytic Jordan curves. Consider the function

fε =
u− uε

ε

on Bε and some function f which is harmonic on B \
⋃
γ, continuous on B, and satisfies the boundary

conditions

f = 0 on Γ1,
∂f

∂n
= 0 on Γ2, f(z) = ϕ(z)

∂u

∂n
(z), z ∈ γ ∀γ ∈ {γ}.

Henceforth, differentiation is with respect to the positively oriented normal to the corresponding curve.
In view of the uniform continuity of f , for every real δ > 0 and arbitrary curve γ ∈ {γ} we have

|f(z)− f(zε)| < δ, z ∈ γ,

for ε sufficiently small. Taylor’s formula yields

fε(zε) = ϕ(z)
∂u

∂n
(z) +O(ε) = f(z) +O(ε) as ε → 0;

furthermore, O(ε) is uniform in z ∈ γ. Hence, |fε(zε)− f(zε)| ≤ δ for all zε ∈ γε and ε sufficiently small.
The maximum principle for harmonic functions and Hopf’s Lemma imply that |fε(z) − f(z)| ≤ δ for
all z ∈ Bε, and consequently, on an arbitrary compact subset of B \

⋃
γ for ε small. Thus, fε together

with partial derivatives converge to f as ε → 0 uniformly inside B \
⋃
γ.

Associate to each arc γε with γ ∈ {γ} a doubly connected domain Qγε with one boundary compo-
nent γε and the other some closed analytic Jordan curve. Associate to the closed curve γε with γ ∈ {γ}
two disjoint doubly connected domains Q+

γε and Q−
γε with one boundary component γε and the other

a closed analytic Jordan curve. Assume that Qγε , Q
+
γε , and Q−

γε are disjoint and the closures of the
domains lie in B. By Kellogg’s Theorem [8, Theorem 1] we conclude that fε has continuous first partial
derivatives on the closures of Qγε , Q

+
γε , and Q−

γε . We will need the normal derivative ∂fε/∂n on the
boundaries of the domains to be bounded uniformly in ε.

The boundary value problem for harmonic functions, in our case for the function fε, is reduced in [8]
to integral equations. We can express the solution fε, in Q+

γε for definiteness, as the sum of a double layer
potential Wε and a single layer potential Vε [8, Section 3]. The partial derivatives of the potentials on the
boundary of Q+

γε are integrals over the boundary of Q+
γε of some functions depending continuously on the

domain Q+
γε (with respect to ε), as well as, in the case of Wε, on the derivative ∂fε/∂s of the boundary

value of fε along the tangent to the boundary of Q+
γε ; see [8, pp. 111, 114, 120, and Section 6]. It is clear

from the above that ∂fε/∂s is continuous and bounded uniformly in ε both on the curve γε by definition
and on (∂Q+

γε) \ γε by the uniform convergence on B \
⋃
γ of the partial derivative of fε. In view of the

expression (22) of [8], we conclude that the first partial derivatives of fε are bounded on ∂Q+
γε uniformly

in ε. We verify similarly that the first partial derivatives of fε on ∂Q−
γε are bounded uniformly in ε. In the

case of Qγε these derivatives are also bounded, which we can easily verify by mapping Qγε conformally
onto a Jordan domain and applying previous arguments to the corresponding superposition; the support
of δn(z) does not contain the endpoints of γ.

Henceforth we denote the curve γ ∈ {γ} also by γ+, whereas the same curve with the opposite

direction by γ−. Similarly, γ+ε = γε and γ−ε is the curve opposite to γ+ε . Applying the Green’s formula,3)

3)In our case this formula is valid because of the restrictions on the growth of the gradients of u and uε in
a neighborhood of the endpoints of Γ2; cf. [4, p. 455; 9, p. 306].
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we obtain
I(uε, Bε)− I(u,B) = I(uε, Bε)− I(u,Bε)

−2
∑[∫

γ+
ε

(u− uε)
∂u

∂n
|dz|+

∫

γ−
ε

(u− uε)
∂u

∂n
|dz|

]

= I(uε, Bε) + I(u,Bε) + 2

∫
∂Bε

(uε − u+ u)
∂u

∂n
|dz| = I(u− uε, Bε)

= −
∫

∂Bε

(u− uε)
∂(u− uε)

∂n
|dz|

(the boundary of B is oriented in the positive direction)

= −
∑[∫

γ+
ε

(u− uε)
∂(u− uε)

∂n
|dz|+

∫

γ−
ε

(u− uε)
∂(u− uε)

∂n
|dz|

]
.

Among the above relations we highlight the two equalities

I(uε, Bε)− I(u,B) = −
∑[∫

γ+
ε

(u− uε)
∂(u− uε)

∂n
|dz|+

∫

γ−
ε

(u− uε)
∂(u− uε)

∂n
|dz|

]
, (6)

I(uε, Bε)− I(u,B) = I(u− uε, Bε). (7)

Appreciating the above information about fε, we arrive at the estimate
∣∣∣∣
∫

γ±
ε

(u− uε)
∂(u− uε)

∂n
|dz|

∣∣∣∣ = ε2
∣∣∣∣
∫

γ±
ε

fε
∂fε
∂n

|dz|
∣∣∣∣ = O(ε2) as ε → 0.

Consequently, (6) yields
I(uε, Bε)− I(u,B) = O(ε2) as ε → 0.

To prove the inverse relation with (6) would require a sharper estimate for the derivative ∂fε/∂n,
and consequently a deeper analysis of the proof of Theorem 1 in [8]. It is simpler to observe that under
the hypotheses of Theorem 1 there is a subarc γ0 ⊂ γ, γ ∈ {γ} on which ϕ(z) �= 0, while Hopf’s Lemma
yields ∂u/∂n �= 0 on γ0. Consequently, f �≡ 0 in B \

⋃
γ. Thus, B \

⋃
γ includes a closed disk E with

I(f,E) �= 0. For ε sufficiently small the disk E lies in Bε and

I(u− uε, Bε) ≥ I(u− uε, E) = ε2I(fε, E) = ε2I(f,E) + o(ε2) ≥ ε2
I(f,E)

2
.

With (7) this yields
ε2 = O(I(uε, Bε)− I(u,B)) as ε → 0.

The proof of Theorem 1 is complete.

3. Moduli and Capacities

To an arbitrary doubly connected domain D ⊂ C with nondegenerate boundary components E0

and E1, associate the condenser C = (E0, E1) whose capacity equals capC = I(ω,D). Here ω is the
“potential function” of C continuous on D, harmonic on D, vanishing on E0, and equal to 1 on E1. It is
well known that

capC =
1

modD
;
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for more detail on capacity, see [9]. Put

B(τ1, τ2) = {z : τ1 < |z| < τ2}, T (τ) = {z : |z| = τ}.

The circle γ = T (r) is a level curve of the function

u(z) =
log(|z|/t)
log(s/t)

, 0 < s < r < t < ∞.

The curve γε resulting from γ by the deformation in (3) partitions the annulus B = B(s, t) into disjoint
doubly connected domains B1 and B2; assume that T (s) ⊂ ∂B1. In the case ϕ �≡ 0 Theorem 1 yields

I(uε, B1 ∪B2)− I(u,B) � ε2 as ε → 0, (8)

where uε is a function continuous on B, harmonic on B1 ∪B2, equal to 1 on T (s) and to 0 on T (t), and

uε = δ :=
log(r/t)

log(s/t)
on γε.

The function u is potential for the condenser C = (T (t), T (s)), while (uε − δ)/(1 − δ) is the potential
function for the condenser C1 = (γε, T (s)) and uε/δ is the potential function for the condenser C2 =
(T (t), γε). Thus, (8) becomes

0 ≤ (1− δ)2 capC1 + δ2 capC2 − capC � ε2 as ε → 0.

In terms of moduli this inequality looks like

0 ≤ mod2B∗
1

modB1
+

mod2B∗
2

modB2
−modB � ε2 as ε → 0, (9)

where B∗
1 = B(s, r) and B∗

2 = B(r, t), while the deformation of (3) satisfies the condition ϕ �≡ 0.
Verify that (9) implies (2). We may assume that ϕ �≡ 0. Denote by B′

1 and B′
2 the circular an-

nuli B(s, r(ε)) and B(r(ε), t) whose areas in the logarithmic metric (2π|z|)−1|dz| are equal respectively
to the areas of the domains B1 and B2 in the same metric. It is obvious that r(ε) = r + cε + O(ε2),
where c is some constant depending on the function ϕ. Rengel’s Lemma [9, Section 5.5] yields

modB1 ≤ modB′
1, modB2 ≤ modB′

2.

Subtracting from (9) the equality

mod2B∗
1

modB′
1

+
mod2B∗

2

modB′
2

−modB = O(ε2) as ε → 0,

we obtain
mod2B∗

1

modB1
− mod2B∗

1

modB′
1

+
mod2B∗

2

modB2
− mod2B∗

2

modB′
2

≤ Cε2,

where C is some constant. Hence,

modB′
k −modBk = O(ε2) as ε → 0, k = 1, 2.

Consequently,

0 ≤ modB −modB1 −modB2 = modB′
1 −modB1 +modB′

2 −modB2 = O(ε2) as ε → 0,

which means the validity of (2). Similarly we can establish the inequalities supplementing Theorem 4.2
and Corollary 4.3 of [4].
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