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DECOMPOSITIONS IN SEMIRINGS
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Abstract: We prove that each element of a complete atomic l-semiring has a canonical decomposition.
We also find some sufficient conditions for the decomposition to be unique that are expressed by first-
order sentences. As a corollary, we obtain a theorem of Avgustinovich–Frid which claims that each
factorial language has the unique canonical decomposition.
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1. Introduction

In [1], Avgustinovich and Frid proved that each factorial language can be presented as the catenation
of irreducible factorial languages; moreover, this representation is unique and optimal in a sense (the de-
compositions were called in [1] canonical; see [1, p. 151] and cf. Definition 7 of this article). Later, these
authors established in [2] that all the irreducible components of the canonical decomposition of a regular
factorial language are regular themselves. We also refer to the paper by Frid [3] on the related matters.

In this paper, we present an algebraic point of view at the matter. Namely, we show that each
element of an ordered semiring with certain properties has the canonical decomposition (see Theorem 1).
Furthermore, we find the two conditions, either of them expressed by a first-order sentence, that guarantee
the uniqueness of canonical decompositions in ordered semirings (see Theorem 2). Then we demonstrate
in Section 5 that the set of factorial languages over a fixed finite alphabet forms an ordered semiring
with all required properties. This yields the above-mentioned theorem by Avgustinovich and Frid (see
Corollary 2).

Our lattice-theoretic terminology is in accordance with [4, 5]. Our semiring terminology is in accor-
dance with [4, 6].

2. The Basic Notions

We present in this section the necessary definitions and auxiliary results that will be used later.

2.1. l-Semirings.

Definition 1. An algebra M = 〈M ; ·, 1〉 is a monoid if the following are satisfied:
(i) a(bc) = (ab)c for all a, b, c ∈ M ;
(ii) a · 1 = 1 · a = a for all a ∈ M .
The monoid M is commutative if ab = ba for all a, b ∈ M .

Definition 2 [6, p. 1]. An algebra R = 〈R; +, ·, 0, 1〉 is a semiring if the following are satisfied:
(i) 〈R; +, 0〉 is a commutative monoid;
(ii) 〈R; ·, 1〉 is a monoid;
(iii) a(b+ c)d = abd+ acd for all a, b, c, d ∈ R;
(iv) a0 = 0a = 0 for all a ∈ R.

If 〈R; ·, 1〉 is a monoid, X ⊆ R, and r ∈ R then we put rX = {rx | x ∈ X} and Xr = {xr | x ∈ X}.
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Definition 3 [6, p. 217]. A semiring R = 〈R; +, ·, 0, 1〉 is a lattice-ordered semiring or just an
l-semiring if we can define the lattice operations of join ∨ and meet ∧ on R with the properties:

(i) a+ b = a ∨ b for all a, b ∈ R;
(ii) ab ≤ a ∧ b for all a, b ∈ R.
Here a ≤ b means that a ∨ b = b or, equivalently, a + b = b. If the lattice 〈R; +,∧〉 is distributive

then so we call the l-semiring R.

In what follows, we consider lattice-ordered semirings in the signature {+, ·,∧, 0, 1}.
Definition 4. We say that an l-semiring 〈R; +, ·,∧, 0, 1〉 is complete if 〈R; +,∧〉 is a complete lattice

with the following properties:
(i) p

(
ΣX)r = ΣpXr for all p, r ∈ R and X ⊆ R;

(ii) p
(∧

X
)
r =

∧
pXr for all p, r ∈ R and all X ⊆ R.

We note that our definition of complete l-semiring differs from the definition of complete lattice-
ordered semiring given in [6, p. 227].

Lemma 1. If R = 〈R; +, ·,∧, 0, 1〉 is an l-semiring then the operation · respects the ordering ≤.
Moreover, a ≤ 1 for all a ∈ R.

Proof. Suppose that ai ≤ bi in R where i < 2. This means that a0a1 ≤ a0a1+a0b1 = a0(a1+ b1) =
a0b1 ≤ a0b1 + b0b1 = (a0 + b0)b1 = b0b1; i.e., the operation · indeed respects ≤.

Given a ∈ R, we have a = a · 1 ≤ a ∧ 1 ≤ 1. �
An element r of an ordered semiring 〈R; +, ·, 0, 1,≤〉 is prime if ab ≤ r implies that a ≤ r or b ≤ r for

all a, b ∈ R; and r is ∧-prime if a∧b ≤ r implies that a ≤ r or b ≤ r for all a, b ∈ R. Moreover, r ∈ R\{1}
is irreducible if ab = r implies that a = r or b = r for all a, b ∈ R. It is clear that each prime element
is irreducible. An element r ∈ R\{1} is completely irreducible if ab = r implies that {a, b} = {r, 1} for
all a, b ∈ R.

Given a semiring 〈R; +, ·, 0, 1〉 and a set X ⊆ R, let [X] denote the submonoid of 〈R; ·, 1〉 generated
by X.

Definition 5. Let R = 〈R; +, ·,∧, 0, 1〉 be a complete l-semiring. Then R is atomic if there is
a subset A ⊆ R\{1} consisting of the prime elements satisfying the condition

for each r ∈ R, there is X ⊆ [A] such that
∧

X = r.

The elements of A are called atoms of the l-semiring R in this case.

Clearly,
∧
[A] = 0 in terms of Definition 5. Also each complete distributive algebraic lattice turns

to a complete atomic l-semiring under the assumption that the operations · and ∧ agree. Some more
involved example of a complete atomic l-semiring appears in Section 5.

Lemma 2. If r =
∧
X and ∅ 	= X ⊆ [A] then r 	= 1.

Proof. As X 	= ∅, there are n < ω and a0, . . . , an ∈ A such that a0 · · · an ∈ X. We see in this case
that r ≤ a0 · · · an ≤ a0 ∧ · · · ∧ an ≤ a0 < 1 by Lemma 1. �

The following is a generalization of Lemma 6 of [1] for semirings:

Lemma 3. Let 〈R; +, ·,∧, 0, 1〉 be a complete atomic l-semiring with a finite set A ⊆ R of atoms
and let {ri | i < ω} ⊆ R\{1}. Then there are n0 < ω and a nonempty set B ⊆ A such that

∧

m<ω

rn+m · · · rn =
∧

[B]

for all n ≥ n0.

Proof. Put
B = {a ∈ A | the set {n < ω | rn ≤ a} is infinite}.
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It follows from the definition of A that B 	= ∅. We choose the least n0 < ω which satisfies the condition

if rn ≤ a for some n ≥ n0 then a ∈ B.

Such n0 exists by the definition of the set B and the finiteness of A. Furthermore, for all b0, . . . , bk ∈ B
and n ≥ n0, there are m0, . . . ,mk < ω such that n ≤ mk < · · · < m0 < ω and rmi ≤ bi for all i ≤ k.
Therefore, rm0 · · · rmk

≤ b0 · · · bk by Lemma 1. Thus, by Definition 3(ii) rn+m · · · rn ≤ b0 · · · bk, where
m < ω is such that n ≤ mk < · · · < m0 ≤ n+m. This implies that

∧

m<ω

rn+m · · · rn ≤
∧

[B].

Further, according to Definition 5, for all n ≥ n0 and m < ω, there is Xmn ⊆ [A] such that
rn+m · · · rn =

∧
Xmn. It is clear that if x ≤ a ∈ A for some x ∈ Xmn then rn+m · · · rn ≤ x ≤ a, whence

rn+k ≤ a for some k ≤ m in view of the primality of a. The definition of n0 yields a ∈ B. We conclude
therefore that Xmn ⊆ [B]; i.e.,

∧
[B] ≤

∧{∧
Xmn | m < ω

}
=

∧

m<ω

rn+m · · · rn.

Thus, the desired equality ∧
[B] =

∧

m<ω

rn+m · · · rn

holds. �
The next statement is a generalization of Lemma 7 of [1] for semirings.

Lemma 4. Let 〈R; +, ·,∧, 0, 1〉 be a complete atomic l-semiring with finitely many atoms and let
{pi, ri+1 | i < ω} ⊆ R.

(i) If pi = pi+1ri+1 for all i < ω then there is n < ω such that pn = pn+k for all k < ω.
(ii) If pi = ri+1pi+1 for all i < ω then there is n < ω such that pn = pn+k for all k < ω.

Proof. We will demonstrate (i), as (ii) has some symmetric proof that uses a claim symmetric to
the claim of Lemma 3.

If there is n < ω such that rn+k = 1 for all k < ω then the desired statement is obvious. Therefore,
it suffices to consider the case when {ri+1 | i < ω} ⊆ R\{1}. Indeed, pi = pi+1ri+1 ≤ pi+1 for all i < ω.
According to Lemma 3, there are a finite set of atoms B ⊆ R and n0 < ω such that

∧

m<ω

rn+m · · · rn =
∧

[B]

for each n ≥ n0. We fix a particular integer n ≥ n0 and put a =
∑

i<ω pi and b =
∧
[B] (we recall that

we consider a complete l-semiring). Given k < ω, we see by Lemma 1 that

pn = pn+k+1rn+k+1 · · · rn+1 ≤
(∑

i<ω

pi

)
rn+k+1 · · · rn+1 = arn+k+1 · · · rn+1,

whence

pn ≤
∧

k<ω

(arn+k+1 · · · rn+1) = a
(∧

k<ω

rn+k+1 · · · rn+1

)
= ab =

(∑

i<ω

pi

)
b

=
(∑

i<ω

pn+i+1

)
b =

∑

i<ω

pn+i+1b ≤
∑

i<ω

pn+i+1rn+i · · · rn+1 = pn.

Therefore, pn = ab for all n ≥ n0 and the desired statement follows. �
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2.2. Factorial languages. Given arbitrary languages K, L, and Li, with i ∈ I, over an alphabet Σ,
we consider the operations ⋂

i∈I
Li =

{
α ∈ Σ∗ | α ∈ Li for all i ∈ I

}
;

⋃

i∈I
Li =

{
α ∈ Σ∗ | α ∈ Li for some i ∈ I

}
;

KL = {αβ | α ∈ K,β ∈ L}; L∗ =
⋃{

Ln | n < ω
}
.

Let λ denote the empty word and let |α| denote the length of α ∈ Σ∗; in particular, |λ| = 0.

Definition 6. A language L ⊆ Σ∗ over an alphabet Σ is factorial if αβγ ∈ L implies that β ∈ L
for all α, γ ∈ Σ∗.

A language L ⊆ Σ∗ is prefixal if L contains all nonempty prefixes of each of its words; in other words,
αβ ∈ L implies that α ∈ L for each nonempty α ∈ Σ∗ and β ∈ Σ∗. A language L ⊆ Σ∗ is suffixal if L
contains all nonempty suffices of each of its words; in other words, βα ∈ L implies that α ∈ L for all
nonempty α ∈ Σ∗ and β ∈ Σ∗.

The set of all factorial languages over an alphabet Σ we will denote by FΣ or just by F when there
is no confusion. The following has a straightforward proof:

Lemma 5. Let n > 0 and let A,B,Ai ⊆ Σ∗, with i ∈ I, be factorial languages. Then so are
⋃

i∈I Ai,⋂
i∈I Ai, and AB.

Given a language A ⊆ Σ∗, put

F (A) = {ξ ∈ Σ∗ | ξ 	= λ, αξβ ∈ A for some α, β ∈ Σ∗};
P (A) = {ξ ∈ Σ∗ | ξ 	= λ, αξ ∈ A for all α ∈ A};
S(A) = {ξ ∈ Σ∗ | ξ 	= λ, ξα ∈ A for all α ∈ A}.

It is clear that F (A) is the least factorial language containing A. Moreover, if A is a factorial language,
then P (A) is a prefixal language and S(A) is a suffixal language.

Lemma 6 [1, Lemmas 5 and 5′]. Let A,B ⊆ Σ∗ be factorial languages.
(i) F (A\XA)B = F (AB\XAB) for every prefixal language X ⊆ Σ∗.
(ii) AF (B\BX) = F (AB\ABX) for every suffixal language X ⊆ Σ∗.

3. Existence of Decompositions in l-Semirings

Definition 7. A representation r = r0 · · · rn, where n < ω, of an element r of an ordered semiring
〈R; +, ·,≤, 0, 1〉 as a product of elements of R is a canonical decomposition for r if the following are
satisfied:

(i) ri is irreducible for each i ≤ n;
(ii) r = r0 · · · ri−1xri+1 · · · rn implies that x ≤ ri for all i ≤ n.

From Definition 7 we obtain

Lemma 7. Let 〈R; +, ·,∧, 0, 1〉 be an ordered semiring. If r = p0 · · · pn is a canonical decomposition
of r ∈ R then r′ = pk · · · pm for all k and m such that 1 ≤ k ≤ m ≤ n.

Lemma 8. Let 〈R; +, ·,∧, 0, 1〉 be a complete l-semiring and let r ∈ R\{1}. Then either r is an
irreducible element or there is a decomposition r = r0r1 which satisfies condition (ii) of Definition 7.

Proof. If r is not irreducible then there are x, y ∈ R\{r} such that r = xy. According to Defini-
tion 4(i), the set

A = {z ∈ R | r = zy}
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contains the greatest element r0 with respect to ≤ and

B = {z ∈ R | r = r0z}
contains the greatest element r1 with respect to ≤. Therefore, r = r0r1 and r /∈ {r0, r1} as r < x ≤ r0
and r < y ≤ r1. Thus, 1 /∈ {r0, r1}. If r = r0z then z ≤ r1 by the choice of r1. If r = zr1 then
r = r + r = zr1 + r0r1 = (z + r0)r1. Using the choice of r0 and r1 together with Lemma 1, we have

r = r0y ≤ (z + r0)y ≤ (z + r0)r1 = r;

i.e., r = (z + r0)y. We conclude that z ≤ z + r0 ≤ r0. Thus, condition (ii) of Definition 7 is satisfied
too. �

In the proof of the following theorem, we use some idea of the proof of the existence of canonical
decompositions of factorial languages from Avgustinovich and Frid (cf. [1, p. 156]).

Theorem 1. Let R = 〈R; +, ·,∧, 0, 1〉 be a complete atomic l-semiring with finitely many atoms.
Then each p ∈ R\{1} has a canonical decomposition.

Proof. If p is an irreducible element then p = p is a canonical decomposition of p. Otherwise by
Lemma 8, there are nonunit p1, r1 ∈ R\{p} such that the decomposition p = p0 = p0 = p1r1 satisfies
condition (ii) of Definition 7. If p1 is an irreducible element then p1 = p1 is a canonical decomposition of p1.
Otherwise by Lemma 8, there are nonunit p2, r2 ∈ R\{p1} such that the decomposition p1 = p2r2 satisfies
condition (ii) of Definition 7. Repeating this argument, we obtain some set {pi, ri+1 | i < ω} ⊆ R\{1}
such that, for all i < ω, the decomposition pi = pi+1ri+1 satisfies condition (ii) of Definition 7. By
Lemma 4(i), there is a least natural n < ω such that pn = pn+1. This means that pn is irreducible;
moreover, n > 0 as p is reducible.

Let pn = a1 and let p1 denote the least element of

{z ∈ R | p0 = a1z}.
Then rn · · · r1 ≤ p1 and the decomposition p = p0 = a1p

1 satisfies condition (ii) of Definition 7. Indeed,
if p1 = 1 then p0 = a1 = pn is an irreducible element; a contradiction. If p0 = ap1 for some a ∈ R then

p0 = p0 + p0 = ap1 + a1p
1 = (a+ a1)p

1.

If a � a1 then a + a1 > a1 = pn, whence (a + a1)rn > pnrn = pn−1 by the choice of pn. Repeating the
same argument, we infer that (a + a1)rn · · · ri > pi−1 for all i ∈ {1, . . . , n} by the choice of pi. Hence,
p0 = (a+ a1)p

1 ≥ (a+ a1)rn · · · r1 > p0 = p0 by the choice of p1 and Lemma 1, which is impossible. The
contradiction obtained shows that a ≤ a1. Moreover, by the choice of p1, we conclude that p0 	= a1z for
all z � p1. Therefore, the decomposition p0 = a1p

1 satisfies condition (ii) of Definition 7.
If p1 is a reducible element then we apply the above argument to p1 to find a2 and p2 ∈ R\{p1} such

that a2 is an irreducible element and the decomposition p1 = a2p
2 satisfies condition (ii) of Definition 7.

Therefore, p = a1a2p
2. It is clear that p0 	= ap1 = aa2p

2 for all a � a1. If p = a1ap
2 for some a ∈ R then

p0 = p0 + p0 = a1a2p
2 + a1ap

2 = a1(a+ a2)p
2.

If a � a2 then a + a2 > a2, whence (a + a2)p
2 > a2p

2 = p1 by the choice of a2. It follows that
p0 = a1(a+a2)p

2 > a1p
1 = p0 by the choice of p1, which is impossible. The contradiction obtained shows

that a ≤ a2. If p = a1a2z for some z ∈ R then

p0 = p0 + p0 = a1a2p
2 + a1a2z = a1a2(p

2 + z).

If z � p2 then p2 + z > p2, whence a2(p
2 + z) > a2p

2 = p1 by the choice of p2. It follows that
p0 = a1a2(p

2 + z) > a1p
1 = p0 by the choice of p1, which is impossible. This contradiction demonstrates

that z ≤ p2. Therefore, the decomposition p0 = a1a2p
2 satisfies condition (ii) of Definition 7.

Repeating this argument, we obtain some set {ai, pi+1 | i < ω} ⊆ R\{1} such that ai is irreducible
for all i < ω, pi = ai+1p

i+1, and the decomposition p0 = a1 · · · aipi satisfies condition (ii) of Definition 7.
By Lemma 4(ii), there is a least natural m < ω such that pm = pm+1; i.e., the element pm is irre-
ducible. Therefore, each member of the decomposition p = a1 · · · ampm is irreducible and all conditions
of Definition 7 are satisfied. Hence, p = a1 · · · ampm is a canonical decomposition. �
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4. Sufficient Conditions for the Uniqueness of Decompositions in l-Semirings

We consider the sentence (C0) presenting the universal closure of the following formula with free
variables {x0, x1, y0, y1} in the language {+, ·}:

[x0x1 = y0y1] → [x0 ≤ y0] & [y1 ≤ x1] ∨ [y0 ≤ x0]

& [x1 ≤ y1] ∨ [x0 = y0] ∨ [x1 = y1].

We also consider the sentence (C1) presenting the universal closure of the following formula with free
variables {x, x0, x1, y0, y1, z} in the language {+, ·}:

[xx0x1 = xy0y1] & [xx0 ≤ xy0] & [y1 ≤ x1] −→ ∃y∃z[xx0x1 = xyzx1]

& [y0 ≤ y] & [xy0 = xy] & [x0 ≤ yz] & [y1 ≤ zx1].

As usual, we abbreviate x+ y = y as x ≤ y.

Theorem 2. Let R = 〈R; +, ·,∧, 0, 1〉 be an l-semiring in which (C0) and (C1) hold. Then each
element in R has at most one canonical decomposition.

Proof. Given r ∈ R\{1} having a canonical decomposition, let n(r) denote the least number of
elements in such decomposition for r. We prove by induction on n(r) that each r ∈ R has at most one
canonical decomposition. If n(r) = 1 for some element r ∈ R then r is irreducible. Thus, if r = r0 · · · rm
is a canonical decomposition with m > 0 then r ∈ {r0, . . . , rm}. Suppose that r = ri for some i < m.
By Lemma 7, r′ = rri+1 is a canonical decomposition. We have r = r0 · · · rm ≤ riri+1 = rri+1 = r′ ≤ r
whence r = r′ and r = rri+1 is a canonical decomposition. As r = r · 1, we conclude that 1 ≤ ri+1 ≤ 1
whence ri+1 = 1 which is a contradiction with the definition of canonical decomposition. If r = rm then
we see as above that r = rm−1r is a canonical decomposition whence rm−1 = 1, which is again impossible.
Therefore, m = 1 and r = r1. Suppose now that the statement of Theorem 2 holds for each r ∈ R\{1}
with n(r) ≤ i, where i > 0.

Let r = p1 · · · pn = r1 · · · rm be canonical decompositions of r ∈ R\{1}, where n = n(r) = i+ 1 and
m < ω. Then 1 < i+ 1 = n ≤ m whence m > 1. We put p0 = r0 = 1.

Claim 1. pj = rj for all j ≤ n.

Proof. Induct on j ≤ n. As p0 = r0 = 1, the desired statement is true for j = 0. Suppose that
pj = rj for all j ≤ k < n and show that pk+1 = rk+1. We put

δ(x0) = p1 · · · pkpk+1, δ(x1) = pk+2 · · · pn;
δ(y0) = p1 · · · pkrk+1, δ(y1) = rk+2 · · · rm.

As δ(x0)δ(x1) = r = δ(y0)δ(y1) by the induction hypothesis, the premise of (C0) holds in R under
the interpretation δ. By assumption, the conclusion of (C0) also holds in R under this interpretation.
Therefore, the following four cases are possible:

Case 1: δ(x1) = δ(y1) = r′. The two subcases are possible:

Case 1.1: r′ = 1. In this case, r = δ(x0) = δ(y0) whence n = k + 1 = m and r = p1 · · · pkpk+1 =
r1 · · · rkrk+1 is a canonical decomposition of r. By the definition of canonical decomposition, pk+1 ≤
rk+1 ≤ pk+1; i.e., pk+1 = rk+1 which is our desired conclusion.

Case 1.2: r′ 	= 1. In this case, r′ = pk+2 · · · pn = rk+2 · · · rm is a canonical decomposition of r′
by Lemma 7. As n(r′) ≤ n − (k + 1) < n, we conclude by our induction hypothesis made in the
beginning of the proof of Theorem 2 that n = m and pj = rj for all j ∈ {k + 2, . . . , n}. Therefore,
r = p1 · · · pkpk+1pk+2 · · · pn = p1 · · · pkrk+1pk+2 · · · pn are canonical decompositions of r. By the definition
of canonical decomposition, we obtain pk+1 ≤ rk+1 ≤ pk+1; i.e., pk+1 = rk+1, which is our desired
conclusion.
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Case 2: δ(x0) = δ(y0) = r′. By Lemma 7, r′ = p1 · · · pkpk+1 = p1 · · · pkrk+1 is a canonical decom-
position of r′. By the definition of canonical decomposition, we conclude that pk+1 ≤ rk+1 ≤ pk+1; i.e.,
pk+1 = rk+1, which is our desired conclusion.

Case 3: δ(x0) ≤ δ(y0) and δ(y1) ≤ δ(x1). We put

γ(x) = p1 · · · pk, γ(x0) = pk+1, γ(x1) = δ(x1) = pk+2 · · · pn,

γ(y0) = rk+1, γ(y1) = δ(y1) = rk+2 · · · rm.

In this case

γ(x)γ(x0)γ(x1) = γ(x)γ(y0)γ(y1),

γ(x)γ(x0) = δ(x0) ≤ δ(y0) = γ(x)γ(y0),

γ(y1) = δ(y1) ≤ δ(x1) = γ(x1);

i.e., the premise of (C1) holds in R under the interpretation γ. By assumption, the conclusion of (C1)
also holds in R under this interpretation. Therefore, there are b, c ∈ R such that

γ(y0) ≤ b, γ(x)γ(y0) = γ(x)b, r = γ(x)bcγ(x1) = p1 · · · pkbcpk+2 · · · pn,

γ(x0) ≤ bc, γ(y1) ≤ cγ(x1).

By Lemma 7 and our induction hypothesis, γ(x)γ(y0) = p1 · · · pkrk+1 is a canonical decomposition.
Thus, the first two conditions above imply b ≤ rk+1 = γ(y0) ≤ b; i.e., b = rk+1 = γ(y0). Furthermore,
r = p1 · · · pn is a canonical decomposition. Hence, r = γ(x)bcγ(x1) = p1 · · · pkbcpk+2 · · · pn and pk+1 =
γ(x0) ≤ bc imply that pk+1 = bc = rk+1c. As pk+1 is irreducible, we conclude that pk+1 ∈ {rk+1, c}. The
following two subcases are therefore possible:

Case 3.1: pk+1 = rk+1. This is our desired conclusion.

Case 3.2: γ(x0) = pk+1 = c. In this case

γ(x)γ(y1) ≥ γ(x)γ(y0)γ(y1) = r = γ(x)γ(x0)γ(x1) = γ(x)cγ(x1) ≥ γ(x)γ(y1),

whence r = γ(x)γ(y1) = r1 · · · rkrk+2 · · · rm, which contradicts the canonicity of decomposition r =
r1 · · · rm. Thus, this subcase is impossible.

Case 4: δ(y0) ≤ δ(x0) and δ(x1) ≤ δ(y1). This case is symmetric to Case 3.
The proof of Claim 2 is complete. �

By Claim 1, r = p1 · · · pn = p1 · · · pnrn+1 · · · rm are canonical decompositions. If n < m then

r = p1 · · · pn ≥ p1 · · · pnrn+1 ≥ p1 · · · pnrn+1 · · · rm = r

whence r = p1 · · · pnrn+1 is a canonical decomposition by Lemma 7. As r = p1 · · · pn · 1, we conclude that
1 ≤ rn+1 ≤ 1 whence rn+1 = 1, which is a contradiction with the definition of canonical decomposition.
This contradiction shows that n = m. The proof is complete. �

We can now present the main result of this article:

Theorem 3. Each nonunit element of a complete atomic l-semiring R with finitely many atoms
which satisfies (C0) and (C1) has the unique canonical decomposition.

Proof. Follows from Theorems 1 and 2. �
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5. An Application

In this section, we present an application of Theorem 3 to the semiring of factorial languages over
a fixed finite alphabet.

Proposition 1. The structure 〈FΣ;∩, ·,∪,Σ∗, {λ}〉 is a complete distributive l-semiring for an ar-
bitrary alphabet Σ.

Proof. As the operation ∩ of intersection of languages is obviously associative and commutative and
X∩Σ∗ = X for all X ⊆ Σ, the algebraic structure 〈FΣ;∩,Σ∗〉 is a commutative monoid. Furthermore, as
the operation · of catenation is associative and L{λ} = {λ}L = L for all L ⊆ Σ∗, the algebraic structure〈
FΣ; ·, {λ}

〉
is a monoid. Therefore, conditions (i)–(ii) of Definition 2 are satisfied. Moreover, in view of

the equality LΣ∗ = Σ∗L = Σ∗, where L ⊆ Σ∗ is an arbitrary language, condition (iv) of Definition 2 is
also satisfied.

We note that the partial order ≤ on FΣ is the reverse set-theoretic inclusion. The lattice 〈FΣ;∩,∪,
Σ∗, {λ}〉 is obviously complete and distributive. Condition (i) of Definition 3 is obviously satisfied. As
A ∪ B ⊆ AB for factorial languages A and B, condition (ii) of Definition 3 is satisfied. Moreover, it is
not hard to see that condition (ii) of Definition 4 is also satisfied.

We show that condition (i) of Definition 4 (in particular, condition (iii) of Definition 2) is satisfied.
Indeed, let R,S ∈ FΣ and X ⊆ FΣ. It suffices to show that

⋂
RX S =

⋂
{RXS | X ∈ X } ⊆ R

(⋂
X

)
S.

To this end, take α ∈ ⋂{RXS | X ∈ X }. This means that, for each X ∈ X , there are words βX ∈ R,
γX ∈ X, and δX ∈ S such that α = βXγXδX . Let β be the longest prefix of α which belongs to R.
Similarly, let δ be the longest suffix of α belonging to S. The two cases are possible:

Case 1: |β| + |δ| > |α|. In this case, α = βδ′, where δ′ is a suffix of δ. We have in particular
that δ′ ∈ S. As λ ∈ ⋂

X , we conclude that α ∈ R
(⋂

X
)
S.

Case 2: |β| + |δ| ≤ |α|. In this case, α = αγδ, where γ is a subword of γX for all X ∈ X . This
means that γ ∈ X for all X ∈ X . Thus, γ ∈ ⋂

X whence α ∈ R
(⋂

X
)
S.

Therefore, the algebraic structure 〈FΣ;∩, ·,∪,Σ∗, {λ}〉 is a complete distributive l-semiring. �

Proposition 2. The complete l-semiring 〈FΣ;∩, ·,∪,Σ∗, {λ}〉 is atomic with finitely many atoms
for an arbitrary finite alphabet Σ.

Proof. We put A =
{{a, λ} | a ∈ Σ

}
. It is straightforward to see that A is a finite set of atoms

in FΣ and all conditions of Definition 5 are satisfied for the set A. �

From Propositions 1, 2, and Theorem 1, we obtain

Corollary 1. Each nontrivial factorial language L ⊆ Σ∗ has a canonical decomposition for an
arbitrary finite alphabet Σ.

In the proof of Proposition 3 below, we use an argument by Avgustinovich and Frid (see [1, p. 157,
Case 1]).

Proposition 3. The sentence (C0) holds in the algebraic structure 〈FΣ;∩, ·,∪,Σ∗, {λ}〉 for an ar-
bitrary alphabet Σ.

Proof. Suppose that A0A1 = B0B1 for some factorial languages A0, A1, B0, B1 ∈ FΣ; i.e., the
premise of (C0) holds. The following cases are possible:

Case 1: A0 ⊆ B0 and B1 � A1. In this case, there is a word α ∈ B1\A1. Let β denote the longest
suffix of α which belongs to A1. In this case, α = γβ for some nonempty word γ ∈ Σ∗. As α ∈ B1, we
conclude that δγβ = δα ∈ B0B1 = A0A1 for each δ ∈ B0. As γ 	= λ, the word β is the longest suffix
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of δγβ which belongs to A1. This means that δγ ∈ A0 whence δ ∈ A0, since A0 is a factorial language.
Consequently, we proved that B0 ⊆ A0. Therefore, A0 = B0.

Case 2: A0 ⊆ B0 and B1 ⊆ A1. Hence, B0 ≤ A0 and A1 ≤ B1.

Case 3: A0 � B0 and B1 ⊆ A1. In this case, there is a word α ∈ A0\B0. Let β denote the longest
prefix of α which belongs to B0. In this case, α = βγ for some nonempty γ ∈ Σ∗. As α ∈ A0, we conclude
that βγδ = αδ ∈ A0A1 = B0B1 for each δ ∈ A1. Since γ 	= λ, the word β is the longest prefix of βγδ
belonging to B0. This implies that γδ ∈ B1 whence δ ∈ B1 as B1 is a factorial language. Hence, we
proved that A1 ⊆ B1. Therefore, A1 = B1.

Case 4: A0 � B0 and B1 � A1. In this case, there are words α ∈ A0\B0 and β ∈ A1 � B1. Arguing
as in Case 1, we prove that B0 ⊆ A0. Arguing as in Case 3, we show that A1 ⊆ B1. Thus, A0 ≤ B0

and B1 ≤ A1.
We established therefore that the conclusion of (C0) also holds for A0, A1, B0, and B1. �
Proposition 4. The sentence (C1) holds in the algebraic structure 〈FΣ;∩, ·,∪,Σ∗, {λ}〉 for an ar-

bitrary alphabet Σ.

Proof. Suppose that AA0A1 = AB0B1, AA0 ≤ AB0, and B1 ≤ A1 for some factorial languages A,
A0, A1, B0, B1 ∈ FΣ; i.e., the premise of (C1) holds. The last two inequalities mean that AB0 ⊆ AA0

and A1 ⊆ B1. We choose an arbitrary word μ ∈ AA0A1 = AB0B1. Let δ(μ) denote the longest prefix
of μ belonging to AB0 and let α1(μ) denote the longest suffix of μ belonging to A1.

The following cases are possible:

Case 1: |δ(μ)|+ |α1(μ)| ≥ |μ|. We put γ(μ) = λ in this case.

Case 2: |δ(μ)|+ |α1(μ)| < |μ|. In this case, μ = δ(μ)γ(μ)α1(μ) for some nonempty word γ(μ).
We put B = F (B0\P (A)B0) and C = F (γ(μ) | μ ∈ AA0A1). It is obvious that B,C ∈ FΣ.

Claim 1. B ⊆ B0 and AB0 = AB.

Proof. The first inclusion is obvious. We have therefore that AB ⊆ AB0. In order to prove the
reverse inclusion, we choose arbitrary words α ∈ A and β ∈ B0 and show that αβ ∈ AB. Let α′ denote
the longest prefix of αβ which belongs to A. As α ∈ A, we conclude that αβ = α′γ where γ is a suffix
of β. Thus, γ ∈ B0.

Suppose that γ = δγ′ for some word δ ∈ P (A). In this case, γ′ ∈ B0 and αβ = α′γ = α′δγ′.
Moreover, α′ is a proper prefix of α′δ ∈ A. In view of the maximality of α′, this is impossible, whence
γ /∈ P (A)B0 and γ ∈ B0\P (A)B0 ⊆ B. This means that αβ = α′γ ∈ AB. �

Claim 2. AA0A1 = ABCA1.

Proof. In view of Claim 1, it suffices to show that AA0A1 = AB0CA1. By definition, for each
word μ ∈ AA0A1, we have μ = δ(μ)γ(μ)α′(μ) where α′(μ) is a suffix of α1(μ). As α1(μ) ∈ A1 and A1

is a factorial language; therefore, α′(μ) ∈ A1. Moreover, by construction and Claim 1, δ(μ) ∈ AB0 and
γ(μ) ∈ C. Thus, μ ∈ AB0CA1 whence AA0A1 ⊆ AB0CA1. In order to prove the reverse inclusion, we
consider arbitrary words α ∈ A, β ∈ B0, γ ∈ C, and ξ ∈ A1. We have to show that αβγξ ∈ AA0A1. The
two cases are possible:

Case 1: γ = λ. In this case, we have by assumption that

αβγξ = αβξ ∈ AB0A1 ⊆ AA0A1.

Case 2: γ 	= λ. In this case, there are words μ ∈ AA0A1 and γ0, γ1 ∈ Σ∗ such that γ0γγ1 = γ(μ).
Then δ(μ)γ0γγ1α1(μ) = μ ∈ AA0A1. As α1(μ) is the longest suffix of μ belonging to A1; therefore,
δ(μ)γ0γγ1 ∈ AA0. But then δ(μ)γ0γ ∈ AA0 as AA0 is a factorial language. Thus, η = δ(μ)γ0γξ ∈
AA0A1 = AB0B1. As δ(μ) is the longest prefix of η belonging to AB0, we conclude that γ0γξ ∈ B1 and
γξ ∈ B1, since B1 is a factorial language. Hence, αβγξ ∈ AB0B1 = AA0A1. �
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Claim 3. BC ⊆ A0.

Proof. By Lemma 6, the language BC coincides with F
(
B0C\P (A)B0C

)
. As A0 is a factorial

language, it suffices to verify that

B0C\P (A)B0C ⊆ A0.

Indeed, we choose arbitrary words β ∈ B0 and γ ∈ C such that βγ /∈ P (A)B0C. We have to show that
βγ ∈ A0. The following cases are possible:

Case 1: γ = λ. In this case, βγ = β /∈ P (A)B0 whence β ∈ B. Given an arbitrary word α ∈ A,
we have αβ ∈ AB ⊆ AB0 ⊆ AA0. Let α′ denote the longest prefix of the word αβ which belongs to A.
Since α ∈ A, we conclude that α′ = αδ(α) where δ(α) is a prefix of β; i.e., β = δ(α)β′(α) and β′(α) ∈ B0.
We choose α0 so that the word δ(α0) is of least length among the words in X = {δ(α) | α ∈ A}.

Suppose that δ(α0) 	= λ and prove that δ(α0) ∈ P (A) in this case. Indeed, consider an arbitrary word
α ∈ A. Then αβ = αδ(α)β′(α). As δ(α0) is of least length in X, we conclude that δ(α0) is a prefix δ(α)
whence αδ(α0) is a prefix of αδ(α) ∈ A. Therefore, αδ(α0) ∈ A and δ(α0) ∈ P (A). Furthermore, as
β = δ(α0)β

′(α0) ∈ P (A)B0, we obtain a contradiction. This contradiction shows that δ(α0) = λ; i.e., α0

is the longest prefix of α0β ∈ AA0 which belongs to A. Hence, βγ = β ∈ A0.

Case 2: γ 	= λ. In this case, there are words μ ∈ AA0A1 and γ0, γ1 ∈ Σ∗ such that γ0γγ1 = γ(μ) ∈ C.
Then by Claims 1 and 2, for each word α ∈ A, we have

η = αβγγ1α1(μ) ∈ AB0CA1 = ABCA1 = AA0A1.

Since α1(μ) is the longest suffix of η belonging to A1, we conclude that αβγγ1 ∈ AA0 whence αβγ ∈ AA0

for all α ∈ A. Using the same argument as in Case 1, we can show that there is α0 ∈ A such that α0 is
the longest prefix of α0βγ which belongs to A. As α0βγ ∈ AA0, this yields βγ ∈ A0. �

Claim 4. CA1 ⊆ B1.

Proof. Let γ ∈ C and α ∈ A1. We have to show that γα ∈ B1. The following cases are possible:

Case 1: γ = λ. In this case, γα = α ∈ A1 ⊆ B1 by assumption.

Case 2: γ 	= λ. In this case, there are words μ ∈ AA0A1 and γ0, γ1 ∈ Σ∗ such that γ0γγ1 = γ(μ) ∈ C.
Then

η = δ(μ)γ0γα ∈ AB0CA1 = ABCA1 = AA0A1 = AB0B1

by Claims 1 and 2. Since γ0γ 	= λ, the word δ(μ) is the longest prefix of η which belongs to AB0.
Therefore, γ0γα ∈ B1 whence γα ∈ B1 as B1 is a factorial language. �

It follows from Claims 1–4 that the conclusion of (C1) also holds for A, A0, A1, B0, and B1. �

From Propositions 3, 4, and Corollary 1 we obtain the following

Corollary 2 [1, Theorem 1]. Each nontrivial factorial language L ⊆ Σ∗ has the unique canonical
decomposition for an arbitrary finite alphabet Σ.
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