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Abstract—A brief review is presented of contemporary ways of estimating heat capacity and determining their
main advantages and disadvantages. Incremental schemes that predict the temperature dependences of heat
capacity are considered in detail. Results of estimating the heat capacity of (InAs)1–x(GaAs)x solid solutions
using specially selected mixing rules are presented.
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INTRODUCTION

Heat capacity is a key quantity for determining
temperature dependences of the thermodynamic
properties of different substances. Isobaric heat capac-
ity is measured in a number of ways, including relax-
ation (used in physical property measuring systems
(PPMS)), vacuum adiabatic calorimetry, differential
scanning calorimetry (DSC), drop calorimetry, etc.
The first three ways yield values of Cp(T); in the last,
we must differentiate the thermal effect with respect to
temperature to obtain this dependence. All of these
techniques differ in the temperature range of measure-
ment, the accuracy of the data obtained, and the com-
plexity of experiments. Adiabatic calorimetry has the
smallest error (from 0.2% at 298 K to 10–15% near 0
K), while the upper range of such measurements does
not exceed 300–350 K. DSC and drop calorimetry are
characterized by large errors but allow measurements
at fairly high temperatures. Another problem associ-
ated with measuring heat capacity is that the advan-
tages of high-precision experimental techniques can-
not be enjoyed for some substances since the error in
measuring a property is determined by the reproduc-
ibility of a sample’s properties rather than the accuracy
of the procedure.

The question therefore arises of the possibility of
predicting both low- and high-temperature values of
Cp(T) with errors comparable to the accuracy of an
experiment.

The aim of this work is to give a brief overview of
modern ways of estimating the heat capacity of crys-
talline phases. The focus is on the most popular ways
of estimating, and we refer to existing reviews of alter-
native ways of predicting Cp(T) that include numerous
correlation relationships.

Ways of estimating the heat capacity of inorganic
substances proposed before the 1990s were described
in monographs [1–3] and review paper [4], while [5–
10] are of special note in the works of subsequent
decades. The main difference between the ways of
estimating now being developed and those proposed
in the mid-20th century is their authors’ attempts to
estimate accurately the temperature dependences of
Cp(T) beyond predicting Cp(298.15 K).

THE NEUMANN–KOPP RULE 
AND MODIFICATIONS OF IT

Molar heat capacity Cp(T) of a compound is often
estimated using the Neumann–Kopp rule (NKR) by
summing at a given temperature the molar heat capac-

ities (T) of individual components multiplied by
their amounts ni in a compound:

(1)

thereby ignoring the change in heat capacity during as
a compound forms from components [11].

Leitner et al. [6–8] gave a detailed analysis of the
applicability of this rule to describe the heat capacities
of different substances. The authors of [8] noted that
the Neumann–Kopp rule can be used to describe
mainly those substances in which the lattice contribu-
tion to the heat capacity of both the substance itself
and its constituent components predominates. The
undoubted advantage of [8] was an attempt to test the
predictive ability of the Neumann–Kopp rule in a
wide range of temperatures and analyze the factors
that determine the deviation of experimental data
from additivity.
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Mixed oxides were used to show that at low tem-
peratures, the nonzero value of ΔoxCp is due to the dif-
ference in the lattice contribution to the heat capacity
of a mixed oxide caused by a change in the vibrational
spectrum during the formation of the compound [8].
Analysis of the phonon spectrum of BaZrO3 per-
ovskite revealed a notable difference between the low-
frequency acoustic modes of BaZrO3 and BaO, which
in the opinion of the authors results in positive devia-
tion from the Neumann–Kopp rule.

At high temperatures, the deviation from additivity
is associated with the difference between the values of
molar volumes and thermal coefficients. The authors
of [8] therefore proposed introducing correction ΔCdil
into the equation for calculating the heat capacity of a
compound containing several components:

(2)

To estimate the value of the last term in Eq. (2), we
must have information about thermal coefficients
(αi, βi) and molar volumes Vm,i of a substance and its
constituent components:

Consideration of the volume factor when using the
Neumann–Kopp rule correlates with the conclusions
of Meyer [12], who once showed that NKR satisfacto-
rily holds for those solid compounds whose molar vol-
ume is approximately equal to the stoichiometric sum
of the atomic volumes of the elements that form this
compound. Meyer concluded that Cp,m (compound) >
Cp,at (elements), if Vm (compound) > Vat (elements),
and vice versa.

The proposal to improve the description of experi-
mental data by introducing an additional term into
Eq. (1) was not completely new. For example, Hurst
and Harrison [13] recommended a similar solution
that used the below ratio to estimate heat capacity:

where the first sum is calculated with allowance for the
properties of individual substances, and the second
term is the product of two variable parameters. The
main problem was in this case estimating the numeri-
cal value of this additional term.

Zimmermann et al. [14] proposed introducing a
correction factor to improve the quality of heat capac-
ity estimates using the NKR. For example, a correc-
tion factor of 0.982 was introduced for the sum of the
terms on the right side of Eq. (1) in order to match
results from estimating the heat capacity of Y2Cu2O5
and the measured Cp(T) values. The value of this factor
was found using enthalpy increments {H°(873 K) −
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H°(Tref)} of yttrium cuprate, measured in the same
work.

To improve the accuracy of the Neumann–Kopp
technique, it was proposed that properties of larger
pseudo-components be summed [7, 15]. It was rec-
ommended that Cp(T) of binary compounds  and

 be used to calculate the heat capacity of com-
pound AaBbCc, rather than components A, B, and C:

According to the authors, such an approach improves
the reliability of predictions and expands the possibil-
ities of obtaining adequate estimates when simple sub-
stances cannot exist in the solid state under the condi-
tions of interest (e.g., one of the components is a vol-
atile substance like O2, N2, or Hal2).

INCREMENTAL SCHEMES
All incremental schemes for estimating heat capac-

ity are based on the assumption that function Cp(T) of
a substance of interest can be presented as the sum of
the corresponding contributions from individual
structural fragments ( ):

(3)

where  is the amount of the ith component in the
chemical formula of the compound. If we use only
data at room temperature to determine the values of
increments, the estimated heat capacity does not
depend on temperature.

The specific form of functions Сp(Т) and thus
 varies in different works. For example, Robie

et al. [16] used the dependence

and expressions based on it with zero values of some
parameters. Mostafa et al. [5] proposed describing the
heat capacity with a polynomial:

A more complex dependence is used for crystalline
substances in the ASPEN PLUS software package
[17]:

Voronin and Uspenskaya [18, 19] were guided by [20]
when selecting the type of temperature dependence of
the heat capacity of mixed oxides. The recommenda-
tion was to use the below expression with non-negative
values of coefficients k1 and k2 to describe Cp(T) above
250 K:
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Table 1. Heat capacity increments (J/(mol K)) for structural units Uz+ (z = 4, 5, 6), La3+, Th4+, and O2− [5]

N is the frequency of this fragment being in the compounds that was considered during parameterization.

Structural unit N

U4+ 26.669 –29.923 –0.066 2.171 7
U5+ 13.890 –31.178 0.627 –2.126 4
U6+ –14.769 50.875 1.654 –14.399 11
Th4+ 20.291 –28.458 0.351 –1.633 11
La3+ 15.803 –11.296 0.458 3.344 8
O2– 28.152 12.043 –0.747 –4.023 1155

, ,
ˆ

p a iC , ,
ˆ

p b iC , ,
ˆ

p c iC , ,
ˆ

p d iC
Depending on the form of the selected Cp(T) func-
tion, the expressions for estimating the heat capacity
can also differ. Mostafa et al. [5] used the ratio

 (4)

while it was assumed in [19] that

Mostafa’s scheme can be considered the most pop-
ular incremental scheme now in use. In this work, we
consider the main advantages and disadvantages of
this approach using this scheme as an example.

The main advantage of any incremental scheme is
the possibility of estimating a priori the heat capacity
of a compound of interest. The quality of prediction
depends directly on the amount and accuracy of the
data used in the parametrization. In [5], the values of
О2– increments were calculated by allowing for this
fragment being present in 1155 compounds. Na+ was
in 91 compounds; Cr2+ and Cr6+, only in four com-
pounds. The reliability of estimates were higher for
those phases that contained structural fragments in a
larger number of different compounds. Expanding the
range of substances according to which the properties
of the numerical values of the contributions from
structural units are estimated increases the number of
substances whose heat capacity can be predicted.
However, the quality of a prediction often deterio-
rates, compared to schemes that use a narrower range
of substances with similar structural characteristics
[19].

The main disadvantages of incremental schemes
include a system of invariants being created for param-
eters that correlate with one another according to .
Under these conditions, ill-conditioned systems of
equations must be solved numerically, and the depen-
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dences of properties on temperature and composition
cannot be effectively separated [19]. This affects the
reliability of estimates in general. The predicted
dependence can even turn out to be physically contra-
dictory (e.g., with a maximum in the Cp(T) curve cal-
culated from ionic contributions).

One indicator of the quality of any thermodynamic
model is its ability to reproduce properties not used in
model parameterization. In [5], salts of calcium, mag-
nesium, zinc, and manganese were selected as test
objects. The discrepancy between the calculated and
measured values varied from 0.63% for CaCO3 to
7.63% for CaSO4·2H2O. In this work, we decided to
check selectively the possibility of predicting the prop-
erties of mixed oxides that form stoichiometric phases
and solid solutions if experimental data for them were
not considered when estimating the values of incre-
ments in [5]: (U1–xThx)O2 [21] and (U1–xLax)O1.95
[22].

For (U1–xThx)O2 solid solutions, we verified the
reproducibility of the experimentally measured values
of enthalpy increment  −  using the heat
capacity increments recommended in [5] (Table 1).
The results from the comparison of experiments and
calculations for two compositions (x = 0.5 and 0.1) are
shown in Fig. 1. The values of ΔH°(T) agree below
700 K, and the discrepancy grew along with tempera-
ture (Fig. 1). The average value of deviations for three
solid solutions (x = 0.1, 0.5, and 0.9) was ~5%; the
maximum was 10%.

A somewhat different pattern is observed for
(U1‒xLax)Oy solid solutions. The difference between
these solutions and earlier ones is the different degrees
of uranium oxidation, which must be considered when
determining the properties of these phases. When cal-
culating the heat capacity and the enthalpy increment,
we used the numerical values of the parameters for the
corresponding structural units (Table 1). The calcu-
lated results are illustrated by the graphs in Fig. 2.
Function ΔH°(T) of these solid solutions is character-
ized by the same patterns that were observed in ura-
nium oxide doped with thorium. For the phases pre-
sented in Figs. 2b, 2d, the mean value of deviations in
enthalpy H°(T) − H°(298.15 K) taken modulo is 3.8

°TH °298.15H
l. 96  No. 9  2022
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Fig. 1. Comparison of the calculated and measured values of the enthalpy increment for phases (a) (U0.5Th0.5)O2 and
(b) (U0.9Th0.1)O2. Dots are experimental data from [21]; the line presents calculations using increments from Table 1. 
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Fig. 2. Comparison of calculated and measured values of heat capacity and enthalpy increments for phases (a, b) (U0.8La0.2)O1.95
and (c, d) (U0.6La0.4)O1.87. Dots are the experimental data from [22]. The dotted curve shows the smoothed Cp(T) values; the
solid curve, calculations using increments from Table 1. 
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and 9.4% at uranium mole fractions of 0.8 and 0.6,
respectively.

However, the somewhat non-physical behavior of
the calculated heat capacity of the (U0.8La0.2)O1.95
phase is noteworthy. We must consider this artifact,
since it is not an isolated case. Similar behavior was
observed for the stoichiometric compound Y2Cu2O5
[19] when using the increments from [5].

We also determined the possibility of extrapolating
the predicted results to temperatures below 298.15 K
using the example of ZrO2. Attempts to extrapolate the
proposed model dependences to lower temperatures
were unsuccessful. If the difference between the calcu-
lated and measured values was 0.1% for zirconium
oxide at 298.15 K, it reached 1% at the temperature fell
to 278 K and continued to grow (at 238 K, it was
5.6%). The quality of prediction deteriorated when
ZrO2 was doped with 0.08 mol % of Y2O3, and the dif-
ference between Cp(298.15) values was ~1%. At 278 K,
however, the deviations were similar to those observed
for pure zirconium oxide (i.e., they grew by 1%, rela-
tive to 298.15 K). Data from [23] were used in our
calculations.

Besides the type of functional dependence Cp(T),
the choice of structural fragments (e.g., ions, ionic or
neutral forms, associates) is also vital for developing an
incremental scheme. The selected increments may not
correspond at all to real structural elements of the
described compounds or any existing individual sub-
stances. Ions are usually taken as pseudo-components
because of the limited set of experimental data and the
possibility of using it for averaging over large samples
of experimental data. As was noted in [19], however, if
individual atoms or ions rather than groups of atoms
are selected as structural units for constructing an
additive scheme, the consistent use of this way of cal-
culating properties assumes there are zero formation
functions for obtaining more complex phases from
individual oxides (e.g., halides and sulfides).

GLASSER–JENKINS TECHNIQUE

The possibility of improving the predictive ability
of the Neumann–Kopp rule by introducing an addi-
tional term ΔCp,dil, calculated using information on the
volumetric properties of substances, was already dis-
cussed above.

The way of estimating heat capacity proposed in
the works of Glasser and Jenkins [9, 10] is based on the
correlation between heat capacity and the molar vol-
ume of ionic compounds. This approach allows us to
predict Cp only at one temperature (298.15 K). To cal-
culate heat capacity Cp(298.15 K), we propose using
the expressions

≈ +1 ,( ) (298.15K , J/ mol )Кp mC k V c
RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A  Vo
where Vm is the molar volume (nm3), calculated per
formula unit of the compound; M is the molar weight
(g/mol); ρ is density (g/cm3); and k1, k', and c are
parameters of the equation. For a large number of
ionic compounds, k1 = 1322 J/(mol K nm3), and c =
−0.8 J/(mol K). The values of the heat capacity incre-
ments for individual ions (cations and anions) and
neutral particles (to determine the properties of
hydrates) were refined in these works and can be com-
bined with the set of increments proposed by Spencer
in [24].

ESTIMATING HEAT CAPACITY
WITH COMBINATIONS 

OF PLANCK–EINSTEIN FUNCTIONS
In 2013, Voronin and Kutsenok [25] proposed

using a combination of Planck–Einstein functions to
describe the temperature dependences of heat capac-
ity in the range of 0 K to the melting temperature:

(5)

where αi and θi are variable parameters that generally
do not have a strict physical meaning but ensure phys-
ically correct limiting behavior of the Cp(T) function
and an adequate description of results from measuring
heat capacity.

This technique was subsequently developed and is
now actively used in presenting Cp(T) for substances of
different natures [26, 27]. The first successful attempt
to develop a way of determining thermodynamic prop-
erties using this approach was made in 2019 [28], with
zeolites selected as the objects of study. To describe the
heat capacity of this class of substances, the authors
proposed using the expression

where fi are functions that depend on the composition
of the zeolite, expressed in terms of the amounts of
components (determined by vector );  and  are
the vectors of empirical parameters, optimized using
least squares; mi is the number of terms of the
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Table 2. Types of the dependence of parameters αi(x) and θi(x) on composition; Eqs. (6) were used to determine mixed
parameters α2x and θ2x

i αi(x) θi(x)

1 α1(x) = (α1(1) ‒ α1(0))x + α1(0) θ1(x) = (θ1(1) ‒ θ1(0))x + θ1(0)

2 α2(x) = α2(0)(1 – x)2 + 2α2x(1 – x)x + α2(1)x2 θ2(x) = θ2(0)(1 – x)2 + 2θ2x(1 – x)x + θ2(1)x2

≥3 αi(x) = (αi(1) – αi(0))x + αi(0) θi(x) = θi(0) = θi(1)

Table 3. Parameters α and θ of the Planck–Einstein func-
tions for individual InAs and GaAs compounds

i
InAs GaAs

αi θi αi θi

1 0.353146 3453.40 0.318291 4187.68

2 0.535623 331.677 0.633299 358.682

3 0.274842 130.221 0.339065 130.221

4 0.199201 67.2747 0.042965 67.2747

5 0.003273 21.1449 0.00092034 21.1449
ith increment; m is the number of increments; and CE
is the Planck–Einstein function calculated with
Eq. (5). The contributions were estimated based on
results from experimental studies of 46 different zeo-
lites containing water and Li, Na, K, Tl, Ca, Mg, Sr,
Ba, Fe, Al, and Si oxides at T = 0–1000 K. Anomalies
in the heat capacity curves that were associated with
phase transitions were excluded using the specially
developed approach described in [29].

We made the next step in developing ways of esti-
mating thermodynamic functions (particularly heat
capacity) using a combination of Planck–Einstein
functions. Using solid solutions (InAs)1−x(GaAs)x as
an example, we tested the possibility of using different
mixing rules to estimate the heat capacity of solid
solutions. This particular system was selected because
of the availability of fairly accurate measurements of
Cp(T) at different phase compositions in a wide range
of temperatures below 298 K, up to the temperature of
melting for boundary compositions [30, 31]. It is also
essential that ways of estimating the thermodynamic
properties of alloys are extremely scarce, in contrast to
those of mixed oxides or salt systems. Having a suc-
cessful solution to the problem, we could propose a
new way of estimating the thermodynamic properties
of alloys.

Several versions of mixing rules for parameters α
and θ were tested during our calculations. We obtained
a satisfactory description of the experimental data by
varying the dependence of the characteristic tempera-
tures on the composition of only the first two largest
parameters: θ1 and θ2, while the remaining character-
istic temperatures θi (i ≥ 3) were fixed and independent
of composition (this did not significantly affect the
accuracy of the data described within the limits of their
measuring errors). All parameters αi (i ≠ 2) and char-
acteristic temperature θ1 can be taken as linearly
dependent on the composition. For characteristic
temperature θ2 and parameter α2, we must consider at
least a parabolic dependence on composition. With-
out this, it is impossible to reproduce typical anoma-
lies on the curves of excess heat capacities versus tem-
perature (Fig. 3).

Allowing for these limitations, we calculated the
heat capacities of the solid solution using Eq. (5) with
the dependences of the parameters on the composi-
tion presented in Table 2. Mixed parameters α2x and
RUSSIAN JOURNAL O
θ2x were calculated using relations with single empiri-
cal parameter z = 1/24, obtained by optimization
using all available experimental data:

(6)

Four pairs of Planck–Einstein functions were suf-
ficient for an adequate description of the temperature
dependences of the heat capacities of the components.
One more pair of parameters, α1 and θ1, had to be kept
when expanding the range of temperatures to the
melting point, (a count was made again, starting from
the pair of parameters that had the highest value of
characteristic temperature θi). Parameters θi with i ≥ 3
were forcibly equalized when optimizing, which sim-
plified the procedure for applying the mixing rules.
Numerical values of the parameters for the compo-
nents (Table 3) are given with an excess number of sig-
nificant figures for the correct reproduction of the
dependences shown in Fig. 3.

When analyzing the dependence of the excess heat
capacity of the solid solution (ss) (  =  − (1 −
x)  − x ) on temperature (Fig. 3), two items
attract our attention: (a) the absence of significant
residual anomalies in dependences (T) for the
boundary components and the systemic presence of
extrema in similar dependences for solid solutions and
(b) fairly low values of the excess heat capacity, which
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Fig. 3. Dependences of excess heat capacity on temperature for different compositions of (InAs)1–x(GaAs)x solid solutions: x =
(a) 0, (b) 0.4, (c) 0.6, and (d) 0.8. Dots are data from [30]; the dashed curve presents our calculated results. 
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impose certain requirements on heat capacity mea-

surements since their errors should be lower than .
The mixing rules (the calculated curve with allowance
for the mixing rules is indicated in Fig. 3 by a dashed
curve) allow us to describe satisfactorily both the
shape of the curves and the numerical values of the

ex
pC
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excess heat capacity of solid solutions in the tempera-
ture range of 5–300 K.

CONCLUSIONS
Analysis of our calculations and the literature data

show that incremental schemes generally describe the
l. 96  No. 9  2022
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experimental data better than the conventional Neu-
mann–Kopp rule. However, we should check for non-
physical anomalies in the Cp(T) curves before using

estimated values of heat capacity in calculating phase
and chemical equilibria.

With a successful selection of mixing rules, we can
develop schemes for estimating the thermodynamic
properties of phases of variable composition, based on
using combinations of Planck–Einstein functions.
The main factor hindering the development of this
kind of work is the limited high-precision data
obtained via adiabatic calorimetry for a series of solid
solutions in systems of different natures.
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