Skip to main content
Log in

Frontier Orbitals and Аctive Site of Тea Рolyphenol Мolecules Epigallocatechin Gallate and Gallocatechin Gallate

  • STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Epigallocatechin gallate (EGCG or (2S,3R)-5,7-dihydroxy-2-(3,4,5-trihydroxyphenyl)-3,4-dihydro-2H-chromen-3-yl 3,4,5-trihydroxybenzoate) and its isomers gallocatechin gallate (GCG or (2R,3R)-2-(3,4,5-trihydroxyphenyl)-3,4-dihydro-1(2H)-benzopyran-3,5,7-triol 3-(3,4,5-trihydroxybenzoate) are the main antioxidant components in tea polyphenols and tea. In this paper, the B3LYP density functional theory (DFT) was used to optimize the EGCG and GCG molecular configuration at the 6‑311G(d,p) level of theory implemented in Gaussian software. The result is convergent and has no imaginary frequency, indicating a stable structure that reaches minimum energy value. Multiwfn wave function analysis software was used to study the frontier orbitals of EGCG and GCG. The electrophilic and nucleophilic sites of the two molecules were predicted by the contribution of each atom to the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO). The results show that the electrophilic reaction is mainly on No.1 benzene ring, and the main contribution is the C atom, especially the para‑C atom of the C atom connected by the two phenolic hydroxyl groups on the benzene ring. At the same time, the activation of the phenolic hydroxyl group on the para- and ortho-C atoms on the benzene ring was verified. When there is a phenolic hydroxyl group on the benzene ring, its para- and ortho-C atoms become more active, and they are easier to lose electrons. So substitution or other reactions occurs. This site is also the main site against oxygen free radicals which is an accelerated aging substance. The nucleophilic sites are mainly around C=O and no. 3 benzene rings, so it has certain ability to obtain electrons. Finally, the active sites of EGCG were analyzed by using the two methods of Fukui function and mean partial ionization energy, and the results were basically consistent with the above.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. H. Mukhtar and N. Ahmad, Am. J. Clin. Nutr. 71, 1698 (2000).

    Article  Google Scholar 

  2. S. Katiyar and H. Mukhtar, Int. J. Oncol. 8, 221 (1996).

    CAS  PubMed  Google Scholar 

  3. L. Trovoa, C. Fuchsb, R. de Rosaa, I. Barbieroa, M. Tramarina, E. Cianib, L. Rusconia, and C. Kilstrup-Nielsena, Neurobiol. Disease 138, 104791 (2020)

    Article  Google Scholar 

  4. Y. Li, S. U. Rahman, Y. Huang, Y. Zhang, P. Ming, L. Zhu, X. Chu, J. Li, S. Feng, X. Wang, and J. Wu, J. Nutr. Biochem. 78, 108324 (2020)

    Article  CAS  Google Scholar 

  5. Q. Ru, Q. Xiong, X. Tian, L. Chen, M. Zhou, Y. Li, and C. Li, Front. Physiol. 10, 1450 (2019).

    Article  Google Scholar 

  6. Y. Baba, J. I. Sonoda, S. Hayashi, N. Tosuji, S. Sonoda, K. Makisumi, and M. Nakajo, Exp. Ther. Med. 4, 452 (2012).

    Article  CAS  Google Scholar 

  7. B. Pu, Y. Xu, C. Du, B. Qin, H. Cao, and Y. You, Food Ind. 38, 301 (2017).

    Google Scholar 

  8. D. Cho, H. W. Jeong, J. K. Kim, A. Y. Kim, Y. D. Hong, J. H. Lee, J. K. Choi, and D. B. Seo, J. Med. Food 22, 779 (2019).

    Article  CAS  Google Scholar 

  9. T. Yu, B. Hu, R. Sun, Z. Jin, Y. Wang, L. Zhang, W. Xu, and G. Liu, Remote Sens. Tech. Appl. 31, 872 (2016).

    Google Scholar 

  10. G. Feng, H. Zhang, Y. Ma, Y. Zhang, K. Zhao, and Y. Shang, Nat. Prod. Res. Develop. 29, 1882 (2017).

    Google Scholar 

  11. J. Luo, J. Song, L. Liu, B. Xue, G. Tian, and Y. Yang, Poultry Sci. 97, 599 (2018).

    Article  CAS  Google Scholar 

  12. A. Takagaki, S. Otani, and F. Nanjo, Biosci. Biotechnol. Biochem. 75, 582 (2011).

    Article  CAS  Google Scholar 

  13. J. D. Lambert, S. Sang, J. Hong, and C. S. Yang, J. Agric. Food Chem. 58, 10016 (2010).

    Article  CAS  Google Scholar 

  14. T. H. Peeters, L. Krissie, B. Vincent, A. M. L. Sanne, N. A. M. H. Corina, M. Remco, V. R. Arno, W. Ron, N. S. Paul, H. Arend, and P. J. L. William, Cancer Metab. 20 (7), 4 (2019).

    Article  Google Scholar 

  15. F. de Amicis, A. Perri, D. Vizza, A. Russo, M. L. Panno, D. Bonofiglio, C. Giordano, L. Mauro, S. Aquila, D. Tramontano, and S. Andò, J. Cell Physiol. 228, 2054 (2013).

    Article  CAS  Google Scholar 

  16. H. Jin, W. Gong, C. Zhang, and S. Wang, Onco Targets Ther. 6, 145 (2013).

    Article  CAS  Google Scholar 

  17. G. Castellano-González, P. Nicolas, O. B. J. William, B. Alban, M. Helder, and J. G. Gilles, Oncotarget 7, 7426 (2016).

    Article  Google Scholar 

  18. T. Li, N. Zhao, J. Lu, Q. Zhu, X. Liu, F. Hao, and X. Jiao, Bioengineered 10, 282 (2019).

    Article  CAS  Google Scholar 

  19. Q. Q. Wu, Y. F. Liang, S. B. Ma, H. Li, and W. Y. Gao, J. Sci. Food Agric. 99, 5984 (2019).

    Article  CAS  Google Scholar 

  20. C. S. Yang, J. D. Lambert, J. Ju, G. Lu, and S. Sang, Toxicol. Appl. Pharm. 224, 265 (2007).

    Article  CAS  Google Scholar 

  21. X. A. Hui, S. H. Hua, Q. Q. Wu, H. Li, and W. Y. Gao, Arch. Biochem. Biophys. 622, 1 (2017).

    Article  CAS  Google Scholar 

  22. J. Chen, Z. Luo, and J. Yao, Phys. Chem. Chem. Phys. 19, 21777 (2017).

    Article  CAS  Google Scholar 

  23. X. Li, X. Cao, N. Heinz, and M. Dolg, Mol. Phys. 2020, e1736676 (2020)

    Article  Google Scholar 

  24. Y. Su, L. Zhou, Z. Zuo, and C. Zhao, Nat. Prod. Res. Develop. 13 (6), 19 (2001).

    Google Scholar 

  25. S. Anitha, S. Krishnan, K. Senthilkumar, and V. Sasirekha, Mol. Phys. 2020, e1745917 (2020)

    Article  Google Scholar 

  26. T. Lu and F. W. Chen, Acta Phys.-Chim. Sin. 28, 1 (2012).

    Article  Google Scholar 

  27. K. Fukui. T, Yonezawa, C. Nagata, and H. Shingu, J. Chem. Phys. 22, 1433 (1954).

    Article  CAS  Google Scholar 

  28. T. Li, Y. L.Tang, Z. G. Ling, and Z. W. Long, Spectrosc. Spec. Anal. 34, 2122 (2014).

    CAS  Google Scholar 

  29. H. J. Forman, K. J. A. Davies, and F. Ursini, Free Radic. Bio. Med. 66, 24 (2014).

    Article  CAS  Google Scholar 

  30. F. Halgand, Ch. Houée-Lévin, M. Weik, and D. Madern, J. Struct. Biol. 210, 107478 (2020).

    Article  CAS  Google Scholar 

  31. A. Warnholtz and T. Munzel, Curr. Control. Trials. Cardiovasc. Med. 1, 38 (2000).

    Article  CAS  Google Scholar 

  32. W. Liu, Z. Xu, T. Yang, Y. Deng, B. Xu, S. Feng, and Y. Li, Free Rad. Res. 48, 849 (2014).

    Article  CAS  Google Scholar 

  33. D. Cho, H. W. Jeong, J. K. Kim, A. Y. Kim, Y. D. Hong, J. H. Lee, J. K. Choi, and D. B. Seo, J. Med. Food 22, 779 (2019).

    Article  CAS  Google Scholar 

  34. P. Monira, U. Keiko, T. Akiko, I. Mamoru, and N. Yoriyuki, Int. J. Mol. Sci. 20, 3630 (2019).

    Article  Google Scholar 

  35. T. Kohri, N. Matsumoto, M. Yamakawa, M. Suzuki, F. Nanjo, Y. Hara, and N. Oku, J. Agric. Food Chem. 49, 4102 (2001).

    Article  CAS  Google Scholar 

  36. K. Unno, M. Pervin, A. Nakagawa, K. Iguchi, A. Hara, A. Takagaki, F. Nanjo, A. Minami, and Y. Nakamura, Mol. Nutr. Food Res. 61, 1700294 (2017).

    Article  Google Scholar 

  37. J. D. Lambert, S. Sang, J. Hong, and C. S. Yang, J. Agric. Food Chem. 58, 10016 (2010).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work is supported by the National Natural Science Foundation of China (grant no. 11164004), Guizhou industrial breakthrough project (grant no. GY[2012]3060), and Guizhou Provincial Photonic Science and Technology Innovation team (Qianke Joint talents team [2015]4017).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tianyu Tang or Yanlin Tang.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, T., Yu, J., Yuan, L. et al. Frontier Orbitals and Аctive Site of Тea Рolyphenol Мolecules Epigallocatechin Gallate and Gallocatechin Gallate. Russ. J. Phys. Chem. 95, 1857–1863 (2021). https://doi.org/10.1134/S0036024421090284

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024421090284

Keywords:

Navigation