Skip to main content
Log in

Synthesis and Characterization of Regular Hexagonal Fe3O4 Nanoplates

  • PHYSICAL CHEMISTRY OF NANOCLUSTERS AND NANOMATERIALS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Uniform hexagonal hematite (α-Fe2O3) nanoplates were prepared via a facile alcohol-thermal reaction without using any template. Each nanoplate is enclosed by (0001) basal planes and {10\(\bar {1}\)2} side surfaces. The phase, size, shape and growth orientation of the resulting product were characterized by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM).In order to obtain a product with more uniform and stable morphology, on the basis of predecessors' studies, the reaction time was adjusted to a small extent, so that an ideal hexagonal nanoplates was obtained. Magnetite (Fe3O4) nanoplates were obtained through a reduction process without changing the morphology and size of the resulting α-Fe2O3 nanoplates. Detection of transition from α-Fe2O3 to Fe3O4 nanoplates by X-ray photoelectron spectroscopy (XPS).The magnetic properties of these reduced nanoplates were investigated and it was found that these nanoplates have higher coercivity and lower saturation magnetization than many other nanostructured iron oxides. The surface adsorption of nonmagnetic materials and their flake morphology may be the cause of this phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. S. S. And and Z. Hao, J. Am. Chem. Soc. 124, 8204 (2002).

    Article  Google Scholar 

  2. J. Park, K. An, Y. Hwang, et al., Nat. Mater. 3, 891 (2004).

    Article  CAS  Google Scholar 

  3. B. H. Kim, N. Lee, H. Kim, et al., J. Am. Chem. Soc. 133, 12624 (2011).

    Article  CAS  Google Scholar 

  4. X. L. Liu, Y. Yang, C. T. Ng, et al., Adv. Mater. 27, 1939 (2015).

    Article  CAS  Google Scholar 

  5. H. M. Fan, J. B. Yi, Y. Yang, et al., ACS Nano 3, 2798 (2009).

    Article  CAS  Google Scholar 

  6. C. Burda, X. Chen, R. Narayanan, et al., Chem. Rev. 105, 1025 (2005).

    Article  CAS  Google Scholar 

  7. R. M. Cornell and U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurences, and Uses (Wiley-VCH, Weinheim, 2003).

    Book  Google Scholar 

  8. R. P. Cowburn, A. O. Adeyeye, and M. E. Welland, Phys. Rev. Lett. 81, 5414 (1998).

    Article  CAS  Google Scholar 

  9. K. J. Kirk, J. N. Chapman, S. Mcvitie, et al., Appl. Phys. Lett. 75, 3683 (1999).

    Article  CAS  Google Scholar 

  10. F. López-Urías, J. J. Torres-Heredia, and E. Muñoz-Sandoval, J. Magn. Magn. Mater. 294 (2), e7 (2005).

    Article  Google Scholar 

  11. A. H. Lu, E. L. Salabas, and F. Schüth, Angew. Chem. 46, 1222 (2010).

    Article  Google Scholar 

  12. Y. W. Jun, J. S. Choi, and J. Cheon, Angew. Chem. Int. Ed. 45, 3414 (2006).

    Article  CAS  Google Scholar 

  13. C. Yang, J. Wu, and Y. Hou, Chem. Commun. 47, 5130 (2011).

    Article  CAS  Google Scholar 

  14. J. Lu, X. Jiao, D. Chen, et al., J. Phys. Chem. C 113 (10) (2009).

  15. L. Chen, X. Yang, C. Jian, et al., Inorg. Chem. 49, 8411 (2010).

    Article  CAS  Google Scholar 

  16. H. Fan, M. You, et al., J. Phys. Chem. C 113, 9928 (2009).

    Article  CAS  Google Scholar 

  17. X. Hu, J. Yu, J. Gong, et al., Adv. Mater. 19, 2324 (2010).

    Article  Google Scholar 

  18. C. J. Jia, L. D. Sun, F. Luo, et al., J. Am. Chem. Soc. 130, 16968 (2008).

    Article  CAS  Google Scholar 

  19. T. Fujii, F. M. F. de Groot, G. A. Sawatzky, et al., Phys. Rev. B 59, 3195 (1999).

    Article  CAS  Google Scholar 

  20. D. Zhang, Z. Liu, S. Han, et al., Nano Lett. 4, 2151 (2004).

    Article  CAS  Google Scholar 

  21. T. J. Daou, G. Pourroy, S. Bégin Colin, et al., Chem. Mater. 18, 4399 (2006).

    Article  CAS  Google Scholar 

  22. D. Briggs and M. P. Seah, Anal. Chem. 61 (7) (1990).

  23. J. Smit and H. P. J. Wijn, Ferrites: Physical Properties of Ferrimagnetic Oxides in Relation to Their Technical Applications (Philips’ Tech. Library, The Netherlands, 1959).

  24. Kyoungja Woo, Jangwon Hong, Sungmoon Choi, et al., Chem. Mater. 16, 2814 (2004).

    Article  CAS  Google Scholar 

Download references

Funding

This work is financially supported by the National Natural Science Foundation of China (nos. 61771092, 52072245, and 51202146), the Natural Science Foundation of Shanghai (no. 17ZR1419700) and Shanghai Collaborative Innovation Center for Translational Medicine (no. TM201710, TM201810), the Liaoning Revitalization Talents Program (XLYC1907079), and Program for Natural Science Foundation of Liaoning Province (2019-ZD-0176).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenghua Li or Yunshu Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Zheng, H., Xue, Y. et al. Synthesis and Characterization of Regular Hexagonal Fe3O4 Nanoplates. Russ. J. Phys. Chem. 95, 1432–1438 (2021). https://doi.org/10.1134/S003602442107027X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602442107027X

Keywords:

Navigation