Skip to main content
Log in

Dynamic Light Scattering Study of the Liquid Ethylene Glycol–Dimethylsulfoxide System

  • CHEMICAL THERMODYNAMICS AND THERMOCHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The liquid ethylene glycol–dimethylsulfoxide system is studied by means of dynamic light scattering. Scattered light spectra and the autocorrelation functions of intensity are obtained, and relaxation times, self-diffusion coefficients, and hydrodynamic radii of associates are calculated. The results are due to solvophobic effects and micro phase separation, as is confirmed by liquid-phase separation within a certain range of temperatures and concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. R. M. Cordeiro, S. Stirling, G. M. Fahy, and J. P. Magalhaes, Cryobiology 71, 405 (2015).

    Article  CAS  Google Scholar 

  2. G. M. Agayan, N. K. Balabaev, and M. N. Rodnikova, Russ. J. Phys. Chem. A 95, 1283 (2021).

  3. G. I. Egorov and D. M. Makarov, Russ. J. Phys. Chem. A 83, 693 (2009).

    Article  CAS  Google Scholar 

  4. M. N. Rodnikova, Yu. A. Zakharova, I. A. Solonina, and D. A. Sirotkin, Russ. J. Phys. Chem. A 86, 892 (2012).

    Article  CAS  Google Scholar 

  5. M. N. Rodnikova, Zh. Fiz. Khim. 62, 275 (1993).

    Google Scholar 

  6. E. G. Kononova, M. N. Rodnikova, I. A. Solonina, and D. A. Sirotkin, Russ. J. Phys. Chem. A 92, 1308 (2018).

    Article  CAS  Google Scholar 

  7. I. A. Solonina, M. N. Rodnikova, M. R. Kiselev, A. V. Khoroshilov, and E. V. Shirokova, Russ. J. Phys. Chem. A 92, 918 (2018).

    Article  CAS  Google Scholar 

  8. M. N. Rodnikova, D. B. Kayumova, Zh. V. Dobrokhotova, A. V. Khoroshilov, and T. M. Val’kovskaya, Russ. J. Phys. Chem. A 81, 1891 (2007).

    Article  CAS  Google Scholar 

  9. F. Comelli, S. Ottani, R. Francesconi, and C. Castellari, J. Chem. Eng. Data 48, 995 (2003).

    Article  CAS  Google Scholar 

  10. G. I. Egorov and D. M. Makarov, Russ. J. Phys. Chem. A 82, 1778 (2008).

    Article  CAS  Google Scholar 

  11. P. Westht, J. Phys. Chem. 98, 3222 (1994).

    Article  Google Scholar 

  12. M. N. Rodnikova, Z. Sh. Idiyatullin, J. Barthel, et al., J. Mol. Liq. 248, 898 (2017).

    Article  CAS  Google Scholar 

  13. I. A. Solonina, M. N. Rodnikova, Yu. A. Zakharova, et al., in Proceedings of the 10th International Kurnakov Workshop on Physicochemical Analysis, Samara, 2013, Vol. 2, p. 289.

  14. M. N. Rodnikova, J. Mol. Liq. 136, 211 (2007).

    Article  CAS  Google Scholar 

  15. A. V. Tyurin, I. A. Solonina, M. N. Rodnikova, and D. A. Sirotkin, Russ. J. Phys. Chem. A (2021, in press).

  16. Dynamic Light Scattering. The Method and Some Applications, Ed. by W. Brown (Clarendon, Oxford, 1993), p. 752.

    Google Scholar 

  17. C. L. Yaws, Thermophysical Properties of Chemicals and Hydrocarbons, 2nd ed. (Gulf Professional, Oxfod, 2014), p. 694.

  18. M. Sedlak, J. Phys. Chem. B 110, 4329 (2006).

    Article  CAS  Google Scholar 

  19. M. Sedlak, J. Phys. Chem. B 110, 4339 (2006).

    Article  CAS  Google Scholar 

  20. M. Sedlak, J. Phys. Chem. B 110, 13976 (2006).

    Article  CAS  Google Scholar 

  21. A. V. Orlova, T. V. Laptinskaya, N. N. Malysheva, and L. O. Kononov, J. Solution Chem. 49, 629 (2020).

    Article  CAS  Google Scholar 

  22. G. V. Lagodzinskaya, T. V. Laptinskaya, and A. I. Kazakov, Russ. Chem. Bull. 67, 1838 (2018).

    Article  CAS  Google Scholar 

  23. S. W. Provencher, Comput. Phys. Commun. 27, 213 (1982).

    Article  Google Scholar 

  24. M. N. Rodnikova, L. V. Lanshina, and I. A. Chaban, Dokl. Akad. Nauk SSSR 315, 148 (1990).

    CAS  Google Scholar 

  25. I. A. Chaban, M. N. Rodnikova, L. L. Chaikov, S. V. Krivokhizha, and V. V. Zhakova, Russ. J. Phys. Chem. A 71, 1974 (1997).

    Google Scholar 

  26. M. N. Rodnikova, Acta Chim. Slov. 56, 215 (2009).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to Prof. L.O. Kononov for his helpful advice and discussions.

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation as part of the State Assignment for the Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences and with the financial support of the Russian Foundation for Basic Research (project no. 19-03-00215).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Rodnikova.

Additional information

Translated by A. Tulyabaev

APPENDIX A

APPENDIX A

Summary of concentrations (scatter angle, 40°)

[DMSO],

mol %

ECF (yes or no)

first day

second day

third day

tenth day

later

0.39

No

Low ECF

Low ECF

ECF after heating and cooling

No on the 69th day

0.79

No

Very low

 

Grew to 0.2

 

0.83

No

Low ECF

Grew to 0.2

Phase separation

 

1.11

No

Peaks of moderate intensity

Peaks of moderate intensity

Peaks of moderate intensity

 

1.61

Peaks of moderate intensity

  

Nonlinear ECF

 

2.08

No

No

No

Not measured

 

2.17

Peaks of moderate intensity

Low ECF

 

Nonlinear ECF (0.2)

 

2.20

Peaks of moderate intensity

No

No

No

 

2.44

No at Т = 303 K

Low at Т = 323 K

ECF = 0.2 at Т = 323 K

ECF = 0.8 at Т = 303 K (maximum)

ECF is 0.2 at Т = 323 K

ECF remained after seven months

2.45

Low ECF

ECF is 0.2

ECF > 0.2; suitable

for calculations

Maximum ECF intensity

ECF remained after four months

2.56

No

No

No

No

 

2.72

No

Low

Low

Low

 

3.01

Peaks of moderate intensity

Low

Low

Low

 

3.07

No

Low

Low

Low

 

3.61

No

No

Low

ECF = 0.6 (appeared on eighth day)

ECF remained after 37 days; phase separation

4.79

Low

Low

 

Low

 

5.63

No at Т = 303 K;

ECF is nonlinear

at Т = 323 K (streams)

ECF = 0.6 (nonlinear) at Т = 323 K (streams)

ECF was observed and depended

on angle

ECF = 0.8

ECF remained after seven months

6.87

No at Т = 303 K;

ECF = 0.6 (nonlinear)

at Т = 323 K (streams)

ECF = 0.8 at Т = 323 K

ECF = 0.8 at Т = 303 K

Maximum ECF

ECF remained after 76 days; phase separation

7.18

No

No

No

Sixth day: no

 

7.93

No

Low

Low

Low

 

8.11

No; peaks of moderate intensity

Low

Low

Low

 

9.54

No

No

Not measured

  

10.95

No

No

Not measured

  

11.07

No

No

Not measured

  

12.56

No

No

Not measured

  

12.75

No

No

Weak

ECF = 0.4, but peaks of moderate intensity

 

14.93

No

Low

Low

Irregular intensity

 

15.97

No

No

Not measured

  

18.49

No

Weak

ECF = 0.4

ECF = 0.4

ECF remained

for four months

20.07

No

No

Not measured

  

25.45

No

Low

Low

Low, but grew slightly

 

26.17

No

No

Not measured

  

29.68

No

No

Not measured

Similar

 

32.25

No

Low

Low, but grew slightly

Low

 

43.74

No

No

Not measured

  
  1. ECF is an exponential correlation function.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solonina, I.A., Laptinskaya, T.V., Rodnikova, M.N. et al. Dynamic Light Scattering Study of the Liquid Ethylene Glycol–Dimethylsulfoxide System. Russ. J. Phys. Chem. 95, 1313–1319 (2021). https://doi.org/10.1134/S0036024421070244

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024421070244

Keywords:

Navigation