Skip to main content
Log in

Effect of F Substituents in Thiophenol on the Structure and Properties of µ2-S-(Difluorothiolate)tetranitrosyl Iron Binuclear Complexes

  • COORDINATION COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Two new neutral binuclear tetranitrosyl iron complexes of general formula [Fe2R2(NO)4] with R = 2,4-difluorothiophenyl (complex 1) and 3,4-difluorothiophenyl (complex 2), donors of nitrogen monoxide (NO), were prepared. The complexes were characterized by single-crystal X-ray diffraction, IR, Mössbauer, EPR spectroscopy, and elemental analysis. The antibacterial activity and cytotoxicity of complex 1, complex 2, and previously synthesized [\({\text{F}}{{{\text{e}}}_{{\text{2}}}}{\text{R}}_{2}^{'}\)(NO)4] with R'= 2,4-dichlorothiophenyl (complex 3) were studied for the first time. The “amount of NO–biological activity” correlations were analyzed depending on the nature and position of the substituent in the thiophenyl ligand. Complex 2 was found to have antibacterial activity that was four times as high as that of the known antibiotic kanamycin. The anti-biofilm activity of complex 2 was studied; it inhibited 46% of biofilm formation and destroyed 32% of M. Luteus biofilms, surpassing the effects of the reference drugs kanamycin and ampicillin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. J. T. Thomas, J. H. Robertson, and E. G. Cox, Acta Crystallogr. 11, 599 (1958). https://doi.org/10.1107/S0365110X58001602

    Article  CAS  Google Scholar 

  2. A. R. Butler, C. Glidewell, A. R. Hyde, et al., Polyhedron 4, 797 (1985). https://doi.org/10.1016/S0277-5387(00)87029-1

    Article  CAS  Google Scholar 

  3. A. R. Butler, C. Glidewell, A. R. Hyde, et al., Inorg. Chem. 24, 2931 (1985). https://doi.org/10.1021/ic00213a012

    Article  CAS  Google Scholar 

  4. C. Glidewell, M. E. Harman, M. B. Hursthouse, et al., J. Chem. Res. 212213, 1676 (1988).

  5. T. C. Harrop, D. Song, S. J. Lippard, et al., J. Am. Chem. Soc. 128, 3528 (2006). https://doi.org/10.1021/ja060186n

    Article  CAS  PubMed  Google Scholar 

  6. C.-C. Tsou, T.-T. Lu, W.-F. Liaw, et al., J. Am. Chem. Soc. 129, 12626 (2007). https://doi.org/10.1021/ja0751375

    Article  CAS  PubMed  Google Scholar 

  7. H. M. Lee and S.-J. Chiou, Acta Crystallogr., Sect. E 65, m1600 (2009). https://doi.org/10.1107/S1600536809048065

  8. Y.-J. Chen, W.-C. Ku, L.-T. Feng, et al., J. Am. Chem. Soc. 130, 10929 (2008). https://doi.org/10.1021/ja711494m

    Article  CAS  PubMed  Google Scholar 

  9. S.-J. Chiou, C.-C. Wang, Ch.-M. Chang, et al., J. Organomet. Chem. 693, 3582 (2008). https://doi.org/10.1016/j.jorganchem.2008.08.034

    Article  CAS  Google Scholar 

  10. M.-C. Tsai, F.-T. Tsai, T.-T. Lu, et al., Inorg. Chem. 48, 9579 (2009). https://doi.org/10.1021/ic901675p

    Article  CAS  PubMed  Google Scholar 

  11. T.-T. Lu, H.-W. Huang, W.-F. Liaw, et al., Inorg. Chem. 48, 9027 (2009). https://doi.org/10.1021/ic9012679

    Article  CAS  PubMed  Google Scholar 

  12. R. Wang, M. A. Camacho-Fernandez, W. Xu, et al., Dalton Trans. 5, 777 (2009). https://doi.org/10.1039/B810230A

    Article  Google Scholar 

  13. H.-H. Chang, H.-J. Huang, Y.-L. Ho, et al., Dalton Trans. 32, 6396 (2009). https://doi.org/10.1039/B902478F

    Article  Google Scholar 

  14. T. B. Rauchfuss and T. D. Weatherill, Inorg. Chem. 21, 827 (1982). https://doi.org/10.1021/ic00132a071

    Article  Google Scholar 

  15. M.-L. Tsai and W.-F. Liaw, Inorg. Chem. 45, 6583 (2006). https://doi.org/10.1021/ic0608849

    Article  CAS  PubMed  Google Scholar 

  16. M.-L. Tsai, C.-H. Hsieh, W.-F. Liaw, et al., Inorg. Chem. 46, 5110 (2007). https://doi.org/10.1021/ic0702567

    Article  CAS  PubMed  Google Scholar 

  17. T. C. Harrop, D. Song, and S. J. Lippard, J. Inorg. Biochem. 101, 1730 (2007). https://doi.org/10.1016/j.jinorgbio.2007.05.006

    Article  CAS  PubMed  Google Scholar 

  18. C.-H. Chen, S.-J. Chiou, H.-Y. Chen, et al., Inorg. Chem. 49, 2023 (2010). https://doi.org/10.1021/ic902324d

    Article  CAS  PubMed  Google Scholar 

  19. C.-C. Tsou and W.-F. Liaw, Chem.-Eur. J. 17, 13358 (2011). https://doi.org/10.1002/chem.201100253

    Article  CAS  PubMed  Google Scholar 

  20. W.-C. Shih, T.-T. Lu, L.-B. Yang, et al., J. Inorg. Biochem. 113, 83 (2012). https://doi.org/10.1016/j.jinorgbio.2012.03.007

    Article  CAS  PubMed  Google Scholar 

  21. C.-Y. Lu and W.-F. Liaw, Inorg. Chem. 52, 13918 (2013). https://doi.org/10.1021/ic402364p

    Article  CAS  PubMed  Google Scholar 

  22. T.-T. Lu, Y.-M. Wang, Ch.-H. Hung, et al., Inorg. Chem. 5720, 12425 (2018). https://doi.org/10.1021/acs.inorgchem.8b01818

    Article  CAS  Google Scholar 

  23. H.-Y. Hsiao, C.-W. Chung, J. H. Santos, et al., Dalton Trans. 48, 9431 (2019). https://doi.org/10.1039/C9DT00777F

    Article  CAS  PubMed  Google Scholar 

  24. A. D. Ostrowski and P. C. Ford, Dalton Trans. 48, 10660 (2009). https://doi.org/10.1039/B912898K

    Article  Google Scholar 

  25. A. F. Vanin, Int. J. Mol. Sci. 22, 10356 (2021). https://doi.org/10.3390/ijms221910356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Q. Xie and C. Nathan, Annu. Rev. Immunol. 15, 323 (1997). https://doi.org/10.1146/annurev.immunol.15.1.323

    Article  PubMed  Google Scholar 

  27. D. A. Wink and J. B. Mitchell, Free Radic. Biol. Med. 25, 434 (1998). https://doi.org/10.1016/S0891-5849(98)00092-6

    Article  CAS  PubMed  Google Scholar 

  28. F. Murad, Biosci. Rep. 19, 133 (1999). https://doi.org/10.1023/A:1020265417394

    Article  CAS  PubMed  Google Scholar 

  29. H.-T. Chung, H.-O. Pae, B.-M. Choi, et al., Biochem. Biophys. Res. Commun. 282, 1075 (2001). https://doi.org/10.1006/bbrc.2001.4670

    Article  CAS  PubMed  Google Scholar 

  30. K. L. Davis, E. Martin, I. V. Turko, et al., Annu. Rev. Pharmacol. Toxicol. 41, 203 (2001). https://doi.org/10.1146/annurev.pharmtox.41.1.203

    Article  CAS  PubMed  Google Scholar 

  31. D. J. Webb and I. L. Megson, Expert Opin. Investig. Drugs 11, 587 (2002). https://doi.org/10.1038/sj.bjp.0707224

    Article  CAS  PubMed  Google Scholar 

  32. D. S. Bredt, Mol. Pharmacol. 63, 1206 (2003). https://doi.org/10.1124/mol.63.6.1206

    Article  CAS  PubMed  Google Scholar 

  33. J. A. McCleverty, Chem. Rev. 104, 403 (2004). https://doi.org/10.1021/cr020623q

    Article  CAS  PubMed  Google Scholar 

  34. D. J. Singel and J. S. Stamler, Annu. Rev. Physiol. 67, 99 (2005). https://doi.org/10.1146/annurev.physiol.67.060603.090918

    Article  CAS  PubMed  Google Scholar 

  35. V. W. T. Liu and P. L. Huang, Cardiovasc. Res. 77, 19 (2008). https://doi.org/10.1016/j.cardiores.2007.06.024

    Article  CAS  PubMed  Google Scholar 

  36. D. G. Hirst and T. Robson, Curr. Pharm. Des. 16, 45 (2010). https://doi.org/10.1016/j.redox.2015.07.002

    Article  CAS  PubMed  Google Scholar 

  37. J. C. Toledo and AugustoO. Jr, Chem. Res. Toxicol. 25, 975 (2012). https://doi.org/10.1021/tx300042g

    Article  CAS  PubMed  Google Scholar 

  38. T. A. Heinrich, R. S. Silva, K. M. Miranda, et al., Br. J. Pharmacol. 169, 1417 (2013). https://doi.org/10.1111/bph.12217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. S. K. Choudhari, M. Chaudhary, S. Bagde, et al., World J. Surg. Oncol. 11, 118 (2013). https://doi.org/10.1186/1477-7819-11-118

    Article  PubMed  Google Scholar 

  40. C. P. Bondonno, K. D. Croft, and J. M. Hodgson, Crit. Rev. Food Sci. Nutr. 56, 2036 (2015). https://doi.org/10.1080/10408398.2013.811212

    Article  CAS  Google Scholar 

  41. D. Basudhar, L. A. Ridnour, R. Cheng, et al., Coord. Chem. Rev. 306, 708 (2016).https://doi.org/10.1016/j.ccr.2015.06.001

  42. G. Herrmann and U. Graepler-Mainka, et al., Infection 44, 513 (2016). https://doi.org/10.1007/s15010-016-0879-x

    Article  CAS  PubMed  Google Scholar 

  43. L. J. Ignarro and B. A. Freeman, Nitric Oxide: Biology and Pathobiology (Elsevier, London, 2017). www.sciencedirect.com/book/9780128042731/nitric-oxide#book-info.

    Google Scholar 

  44. A. Kamm, P. Przychodzen, A. Kuban-Jankowska, et al., Nitric Oxide 93, 102 (2019). .https://doi.org/10.1016/j.niox.2019.09.005

    Article  CAS  PubMed  Google Scholar 

  45. N. Lehnert, E. Kim, H. T. Dong, et al., Chem. Rev. 121, 14682 (2021). https://doi.org/10.1021/acs.chemrev.1c00253

    Article  CAS  PubMed  Google Scholar 

  46. S. M. Aldoshin and N. A. Sanina, Fundamental Sciences—Medicine: Biophysical Medical Technologies (MAKS Press, Moscow, 2015) [in Russian].

    Google Scholar 

  47. N. A. Sanina, N. S. Emel’yanova, A. N. Chekhlov, et al., Russ. Chem. Bull. 59, 1126 (2010). https://doi.org/10.1007/s11172-010-0215-z

    Article  CAS  Google Scholar 

  48. G. I. Kozub, T. A. Kondratieva, G. V. Shilov, et al., Russ. Chem. Bull. 72, 651 (2023). https://doi.org/10.1007/s11172-023-3829-2

    Article  CAS  Google Scholar 

  49. N. A. Sanina, G. I. Kozub, O. S. Zhukova, et al., J. Coord. Chem. 66, 3602 (2013). https://doi.org/10.1080/00958972.2013.848980

    Article  CAS  Google Scholar 

  50. N. A. Sanina, G. I. Kozub, T. A. Kondrat’eva, et al., J. Coord. Chem. 74, 743 (2021). https://doi.org/10.1080/00958972.2020.1869222

    Article  CAS  Google Scholar 

  51. N. A. Sanina, G. I. Kozub, T. A. Kondrat’eva, et al., Russ. Chem. Bull. 66, 1706 (2017). https://doi.org/10.1007/s11172-017-1944-z

    Article  CAS  Google Scholar 

  52. G. I. Kozub, N. A. Sanina, N. S. Emel’yanova, et al., Inorg. Chim. Acta 480, 132 (2018). https://doi.org/10.1016/j.ica.2018.05.015

    Article  CAS  Google Scholar 

  53. N. A. Sanina, A. G. Krivenko, R. A. Manzhos, et al., New J. Chem. 38, 292 (2014). https://doi.org/10.1039/C3NJ00704A

    Article  CAS  Google Scholar 

  54. N. I. Neshev, E. M. Sokolova, G. I. Kozub, et al., Russ. Chem. Bull. 69, 1987 (2020). https://doi.org/10.1007/s11172-020-2989-y

    Article  CAS  Google Scholar 

  55. T. Stupina, A. Balakina, T. Kondrat’eva, et al., Sci. Pharm. 86, 46 (2018). https://doi.org/10.3390/scipharm86040046

    Article  CAS  Google Scholar 

  56. V. A. Mumyatova, G. I. Kozub, T. A. Kondrat’eva, et al., Russ. Chem. Bull. 68, 1025 (2019). https://doi.org/10.1007/s11172-019-2514-3

    Article  CAS  Google Scholar 

  57. O. V. Pokidova, V. O. Novikova, N. S. Emel’yanova, et al., Dalton Trans. 52, 2641 (2023). https://doi.org/10.1039/D2DT04047F

    Article  CAS  PubMed  Google Scholar 

  58. N. A. Sanina, S. M. Aldoshin, T. N. Rudneva, et al., Russ. J. Coord. Chem. 31, 301 (2005). https://doi.org/10.1007/s11173-005-0093-3

    Article  CAS  Google Scholar 

  59. A. Weissberger, E. Proskauer, J. A. Riddick, et al., Organic Solvents: Phys. Properties and Methods of Purification (Interscience, New York, 1955).

    Google Scholar 

  60. G. M. Sheldrick, SHELXTL v. 6.14, Structure Determination Software Suite, 2000.

  61. Cambridge Structural Database, version 5.43 (November, 2022).

  62. L. J. Ignarro, J. M. Fukuto, J. M. Griscavage, et al., Proc. Natl. Acad. Sci. U.S.A. 90, 8103 (1993). https://doi.org/10.1073/pnas.90.17.8103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. P. C. Ford and K. M. Miranda, Nitric Oxide 103, 31 (2020). https://doi.org/10.1016/j.niox.2020.07.004

    Article  CAS  PubMed  Google Scholar 

  64. H. H. Awad and D. M. Stanbury, Int. J. Chem. Kinet. 25, 375 (1993). https://doi.org/10.1002/kin.550250506

    Article  CAS  Google Scholar 

  65. M. N. Möller, N. Rios, M. Trujillo, et al., J. Biol. Chem. 294, 14776 (2019). https://doi.org/10.1074/jbc.REV119.006136

    Article  PubMed  PubMed Central  Google Scholar 

  66. N. A. Sanina, V. Sulimenkov, N. S. Emel’yanova, et al., Dalton Trans. 51, 8893 (2022). https://doi.org/10.1039/D2DT01011A

    Article  CAS  PubMed  Google Scholar 

  67. K. A. Rhodes and H. P. Schweizer, Drug Resist Updates 28, 82 (2016). https://doi.org/10.1016/j.drup.2016.07.003

    Article  Google Scholar 

  68. C. Chan, T. C. Hardin, and J. I. Smart, Future Microbiol. 10, 1325 (2015). https://doi.org/10.2217/fmb.15.53

    Article  CAS  PubMed  Google Scholar 

  69. R. Srinivasan, S. Santhakumari, P. Poonguzhali, et al., Front. Microbiol. 12, 676458 (2021). https://doi.org/10.3389/fmicb.2021.676458

    Article  PubMed  PubMed Central  Google Scholar 

  70. C. W. Hall and T-F. Mah, FEMS Microbiol. Rev. 41, 276 (2017). https://doi.org/10.1093/femsre/fux010

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (Government Assignment no. АААА-А19-119071890015-6).

Author information

Authors and Affiliations

Authors

Contributions

N.A. Sanina came up with and designed an experiment. A.S. Konyukhova synthesized samples and studied their NO-donor activity. D.V. Korchagin and S.M. Aldoshin carried out single-crystal X-ray diffraction experiments. N.S. Ovanesyan studied samples by Mössbauer spectroscopy. A.V. Kulikov performed EPR spectroscopic studies. V.A. Mumyatova and A.A. Terent’ev studied the antibacterial and cytotoxic activities of the compounds. All authors discussed the results.

Corresponding author

Correspondence to N. A. Sanina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Fedorova

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanina, N.A., Konyukhova, A.S., Korchagin, D.V. et al. Effect of F Substituents in Thiophenol on the Structure and Properties of µ2-S-(Difluorothiolate)tetranitrosyl Iron Binuclear Complexes. Russ. J. Inorg. Chem. 68, 1143–1158 (2023). https://doi.org/10.1134/S0036023623601526

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023623601526

Keywords:

Navigation