Skip to main content
Log in

Development of a Pt@C-Based Functional Composite Catalytic Material for Solid-Polymer Fuel Cell Electrodes

  • INORGANIC MATERIALS AND NANOMATERIALS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

A catalytic composite material containing highly conductive Super P carbon black and platinum nanoparticles has been prepared by the liquid-phase synthesis method and studied. An increase in electroactivity of Pt nanoparticles in the presence of highly conductive carbon black has been revealed in comparison with the reference sample, platinized carbon black E-teK, where the carbon material was Vulcan XC-72 carbon black. The nature of the carbon material has been shown to affect the catalytic activity of platinum nanoparticles. The value of the electrochemically active surface area of the developed catalytic material and the catalytic material based on the Etek catalyst has been determined by cyclic voltammetry to be 54 and 20 m2/g, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. L. Carrette, K. A. Friedrich, and U. Stimming, Fuel Cells 1, 5 (2001). https://doi.org/10.1002/1615-6854(2001et05)1:1<5::AID-FUCE5>3.0.CO;2-G

  2. K. Yu, D. J. Groom, X. Wang, et al., Chem. Mater. 26, 5540 (2014). https://doi.org/10.1021/cm501867c

    Article  CAS  Google Scholar 

  3. A. Rabis, P. Rodriguez, and T. Schmidt, J. ACS Catal. 2, 864 (2012). https://doi.org/10.1021/cs3000864

    Article  CAS  Google Scholar 

  4. K. J. Witte, H. J. Bongard, A. A. Topalov, et al., J. Nanotechnol. 5, 44 (2014). https://doi.org/10.3762/bjnano.5.5

    Article  CAS  Google Scholar 

  5. A. Ganesan and M. Narayanasamy, Mater. Renew. Sustain. En. 8, 2 (2019). https://doi.org/10.1007/s40243-019-0156-x

    Article  Google Scholar 

  6. O. A. Shilova, N. N. Gubanova, V. A. Matveev, et al., Glass Phys. Chem. 42, 78 (2016). https://doi.org/10.1134/s1087659616010168

    Article  CAS  Google Scholar 

  7. O. A. Shilova, N. N. Gubanova, A. G. Ivanova, et al., Russ. J. Inorg. Chem. 62, 645 (2017). https://doi.org/10.1134/S0036023617050230

    Article  CAS  Google Scholar 

  8. N. A. Mayorova, O. M. Zhigalina, V. G. Zhigalina, and O. A. Khazova, Russ. J. Electrochem. 50, 223 (2014).https://doi.org/10.1134/S1023193514030082

    Article  CAS  Google Scholar 

  9. I. P. Stolarov, N. V. Cherkashina, I. A. Yakushev, et al., Russ. J. Inorg. Chem. 65, 507 (2020). https://doi.org/10.1134/S003602362004021X

    Article  CAS  Google Scholar 

  10. X. Ren, Q. Lv, L. Liu, et al., Sustainable Energy Fuels 4, 15 (2020). https://doi.org/10.1039/c9se00460b

    Article  CAS  Google Scholar 

  11. Z. Zhanga, J. Liua, J. Gua, et al., Energy Environ. Sci. 7, 2535 (2014). https://doi.org/10.1039/C3EE43886D

    Article  Google Scholar 

  12. L. Brandao, C. Passeira, D. M. Gattia, and A. J. Mendes, Mater. Sci. 46, 7198 (2011). https://doi.org/10.1007/s10853-010-4638-6

    Article  CAS  Google Scholar 

  13. S. Shrestha and W. E. Mustain, J. Electrochem. Soc. 157, B1665 (2010). https://doi.org/110.1149/1.3489412

    Article  CAS  Google Scholar 

  14. R. V. Borisov, O. V. Belousov, and A. M. Zhizhaev, Russ. J. Inorg. Chem. 65, 1623 (2020). https://doi.org/10.1134/S0036023620100034

    Article  CAS  Google Scholar 

  15. A. B. Shishmakov, Y. V. Mikushina, O. V. Koryakova, et al., Russ. J. Inorg. Chem. 64, 864 (2019). https://doi.org/10.1134/S0036023619070155

    Article  CAS  Google Scholar 

  16. R. M. G. Rajapakse, K. G. C. Senarathna, A. Kondo, et al., Adv. Automob. Eng. 4, 1 (2015). https://doi.org/10.4172/2167-7670.1000121

    Article  Google Scholar 

  17. V. V. Khrizanforova, Y. G. Budnikova, I. D. Strelnik, et al., RUCB 62, 1003 (2013).https://doi.org/10.1007/s11172-013-0131-0

  18. S. Litster and G. McLean, J. Power Sources 130, 61 (2004). https://doi.org/10.1016/j.jpowsour.2003.12.055

    Article  CAS  Google Scholar 

  19. D. A. Yatsenko and S. V. Tsybulya, Bull. NSU, Ser. Phys. 3, 47 (2008).

    Google Scholar 

  20. S. Trasatti and O. A. Petrii, Pure Appl. Chem. 63, 711 (1991). https://doi.org/10.1351/pac199163050711

    Article  CAS  Google Scholar 

  21. Z. Xu, H. Zhang, H. Zhong, et al., Appl. Catal. B: Env. 111, 264 (2012). https://doi.org/10.1016/j.apcatb.2011.10.007

    Article  CAS  Google Scholar 

  22. A. Bharti, G. Cheruvally, and S. Muliankeezhu, Int. J. Hydr. En. 42, 11622 (2017). https://doi.org/10.1016/j.ijhydene.2017.02.109

    Article  CAS  Google Scholar 

  23. A. L. Dicks, J. Power Sources 156, 128 (2006). https://doi.org/10.1016/S0378-7753(97)02753-5

Download references

Funding

This work was carried out within the framework of the State Assignment to the Grebenshchikov Institute of Silicate Chemistry of the Russian Academy of Sciences in the field of fundamental scientific research and partially was supported by the Russian Foundation for Basic Research (project no. A-20-03-00938).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Ivanova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Avdeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanova, A.G., Gubanova, N.N., Zagrebelnyy, O.A. et al. Development of a Pt@C-Based Functional Composite Catalytic Material for Solid-Polymer Fuel Cell Electrodes. Russ. J. Inorg. Chem. 66, 773–776 (2021). https://doi.org/10.1134/S0036023621050077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023621050077

Keywords:

Navigation