Skip to main content
Log in

Studies on the Stable Phase Equilibria of Quinary System Li+, K+, Mg2+//Cl, \({{{\text{B}}}_{{\text{4}}}}{\text{O}}_{7}^{{2 - }}\)–H2O at 273 K

  • PHYSICOCHEMICAL ANALYSIS OF INORGANIC SYSTEMS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The isothermal equilibrium method was used to study the stable phase equilibria of the quinary system Li+, K+, Mg2+//Cl, \({{{\text{B}}}_{{\text{4}}}}{\text{O}}_{7}^{{2 - }}\)–H2O at 273 K. The solubility data of each component in this system were measured through experiments, and the isothermal phase diagram of this system was also drawn. For the identification of the equilibrium solid phases of the invariant points, X-ray diffraction characterization was used. The projection surface of the stable phase diagram of the quinary system Li+, K+, Mg2+//Cl, \({{{\text{B}}}_{{\text{4}}}}{\text{O}}_{7}^{{2 - }}\)‒H2O at 273 K was drawn under the saturation condition of MgB4O7. The simplified dry-salt diagram has carnallite (KCl·MgCl2·6H2O) and lithium carnallite (LiCl·MgCl2·7H2O), and it contains eleven univariate solubility curves, five invariant points and seven crystallization regions corresponding to K2B4O7·4H2O, Li2B4O7·3H2O, KCl, MgCl2·6H2O, and LiCl·2H2O and double salts carnallite (KCl·MgCl2·6H2O) and lithium carnallite (LiCl·MgCl2·7H2O). In the quinary system, by comparing the area of each crystalline phase zone, lithium chloride is a highly soluble salt, therefore, in the solubility diagram, in comparison with magnesium tetraborate, it corresponds to the smallest crystallization area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Q. Wu, X. F. Liu, et al., J. Mod. Chem. Ind. 37, 1 (2017). https://doi.org/10.16606/j.cnki.issn.0253-4320.2017.05.001

    Article  CAS  Google Scholar 

  2. W. C. Du and N. Song, J. China Chem. Trade 004, 22 (2012). http://www.cqvip.com/qk/71210x/201203/ 41862784.html.

  3. K. S. Kwok, K. M. Ng, M. E. Taboada, et al., AIChEJ 54, 706 (2008). https://doi.org/10.1002/aic.11421

    Article  CAS  Google Scholar 

  4. H. M. Yang and X. B. Li, J. Haihu Salt Chem. Ind. 5, 15 (2002). http://www.cqvip.com/qk/92939x/200205/ 6936120.html.

    Google Scholar 

  5. P. S. Song, B. Sun, and D. W. Zeng, J. Pure Appl. Chem. 85, 2097 (2013). https://doi.org/10.1351/pac-con-13-04-05

    Article  CAS  Google Scholar 

  6. C. H. Fang, P. S. Song, and J. Q. Chen, J. Salt Lake Sci. 02, 21 (1993). https://doi.org/CNKI:SUN:YHYJ.0.1993-02-004

  7. S. S. Guo, X. D. Yu, and Y. Zeng, J. Chem. Eng. Data, 61, 1566 (2016). https://doi.org/10.1021/acs.jced.5b00938

    Article  CAS  Google Scholar 

  8. P. S. Song, Y. P. Dong, and W. Li, J. Salt Lake Res. 25, 9 (2017). http://www.cqvip.com/qk/93634x/201703/ 673535664.html.

  9. B. Sun and P. S. Song, J. Salt Lake Res. 23, 50 (2015). https://mall.cnki.net/magazine/Article/YHYJ2015040-13.htm.

  10. S. H. Sang, H. A. Yin, S. J. Ni, et al., JCHUS 4, 414 (2006). http://www.docin.com/p-1559520170.html.

  11. S. H. Sang, T. Li, and R. Z. Cui, J. Salt Lake Res. 21, 29 (2013). http://www.cnki.com.cn/Article/CJFDTOTAL-YHYJ201302008.htm.

  12. X. Y. Zhao, S. H. Sang, and M. L. Sun, J. Salt Lake Res. 19, 35 (2011). https://www.doc88.com/p-5931644917485.html.

  13. S. Q. Wang, D. Zhao, Y. Song, et al., Russ. J. Inorg. Chem. 64, 661 (2019). https://doi.org/10.1134/S003602361905019X

    Article  CAS  Google Scholar 

  14. D. Wang, S. H. Sang, X. Zeng, et al., J. Petrochem. Technol. 40, 285 (2011). http://www.docin.com/p-1212879704.html.

    Google Scholar 

  15. K. J. Zhang, S. H. Sang, T. Li, et al., J. Chem. Eng. Data 58, 115 (2013). https://doi.org/org/10.1021/je3009717

    Article  Google Scholar 

  16. Y. X. Hu, S. H. Sang, R. Z. Cui, et al., J. Chem. Eng. Data 59, 1886 (2014). https://doi.org/org/10.1021/je500051e

    Article  CAS  Google Scholar 

  17. X. D. Yu, Y. L. Luo, L. T. Wu, et al., J. Chem. Eng. Data 61, 3311 (2016). https://doi.org/10.1021/acs.jced.6b00359

    Article  CAS  Google Scholar 

  18. S. H. Sang, H. A. Yin, M. L. Tang, et al., J. Chem. Eng. Data 49, 1586 (2004). https://doi.org/10.1021/je034280k

    Article  CAS  Google Scholar 

  19. S. Q. Wang, D. Zhao, Y. Song, et al., Russ. J. Inorg. Chem. 63, 116 (2018). https://doi.org/10.1134/S0036023618010175

    Article  CAS  Google Scholar 

  20. S. H. Sang and J. Peng, J. Chem. Eng. Chin. Univ. 25, 381 (2011). http://en.cnki.com.cn/Article_en/CJFDTotal-GXHX201103005.htm.

    CAS  Google Scholar 

  21. T. Li, S. H. Sang, and R. Z. Cui, J. Chem Eng. 40, 35 (2012). https://doi.org/10.3969/j.issn.1005-9954.2012.11.009

    Article  CAS  Google Scholar 

  22. S. Tursunbadalov, Russ. J. Inorg. Chem. 65, 412 (2020). https://link.springer.com/article/10.1134%2-FS0036023620030195.

    Article  CAS  Google Scholar 

  23. S. Tursunbadalov and L. Soliev, Braz. J. Chem. Eng. 37, 577 (2020). https://doi.org/10.1007/s43153-020-00054-6

    Article  CAS  Google Scholar 

  24. S. H. Sang, L. F. Lei, R. Z. Cui, et al., J. Chem. Eng. Chin. Univ. 28, 21 (2014). https://doi.org/10.3969/j.issn.1003-9015.2013.12.31.02

    Article  CAS  Google Scholar 

  25. Y. Zeng, X. T. He, and H. A. Yin, J. Chin. J. Inorg. Chem. 20, 946 (2004). http://www.cqvip.com/read/ read.aspx?id=10016140.

    CAS  Google Scholar 

  26. R. Z. Cui, S. H. Sang and T. Li, et al., J. CIESC 64, 804 (2013). https://doi.org/10.3969/j.issn.0438-1157.2013.03.007

    Article  CAS  Google Scholar 

  27. T. L. Deng, J. Chem. Eng. Data 49, 1295 (2004). https://doi.org/10.1021/je049975f

    Article  CAS  Google Scholar 

  28. Y. Jing, J. Sea-Lake Salt Chem. Ind. 29, 24 (2000). https://wenku.baidu.com/view/69f69f5d804d2b160b4-ec0e5.html.

    Google Scholar 

  29. S. Q. Wang, J. Gao, X. Yu, et al., J. Salt Lake Res. 15, 44 (2007). https://kns.cnki.net/kcms/detail/detail.aspx?filename=YHYJ200701008&dbcode=CJFQ&dbname=cjfd2007.

    Google Scholar 

Download references

Funding

This project was supported by the National Natural Science Foundation of China (41873071, U1407108) and scientific research and innovation team in Universities of Sichuan Provincial Department of Education (15TD0009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Hua Sang.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chun-Xia He, Xu, JS., Sang, SH. et al. Studies on the Stable Phase Equilibria of Quinary System Li+, K+, Mg2+//Cl, \({{{\text{B}}}_{{\text{4}}}}{\text{O}}_{7}^{{2 - }}\)–H2O at 273 K. Russ. J. Inorg. Chem. 66, 714–723 (2021). https://doi.org/10.1134/S0036023621050065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023621050065

Keywords:

Navigation