Skip to main content
Log in

Synthesis and Gas-Sensitive Chemoresistive Properties of TiO2:Cu Nanocomposite

  • INORGANIC MATERIALS AND NANOMATERIALS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract―

Nanocrystalline TiO2 powder with an average crystallite and particle size of 11.6 ± 1.2 and 36 ± 2 nm, respectively, having anatase structure, has been prepared by the sol–gel method. The powder has been used for pen plotter printing of semiconductor coatings on a special sensor. The sensor surface has been modified with copper-containing nanoclusters using the AACVD method, and the elemental composition of the resulting composite coatings has been studied by the EDX method. TiO2 and TiO2:Cu receptor nanomaterials showed a high reproducible response to H2S at an operating temperature of 300°C. Copper doping of the TiO2 surface contributed to a significant increase in the response to high concentrations of H2S (the RAir/R response by 100 ppm H2S increased from 44.2 to 70.5) probably due to the formation of CuS groups on the surface of the receptor material. The modification of TiO2 with copper oxide led to a decrease in the oxygen sensitivity apparently because of a decrease in the number of active oxygen vacancies involved in the detection of oxygen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. X. Chen and S. S. Mao, Chem. Rev. 107, 2891 (2007). https://doi.org/10.1021/cr0500535

    Article  CAS  PubMed  Google Scholar 

  2. V. C. Anitha, A. N. Banerjee, and S. W. Joo, J. Mater. Sci. 50, 7495 (2015). https://doi.org/10.1007/s10853-015-9303-7

    Article  CAS  Google Scholar 

  3. J. W. J. Hamilton, M. H. Entezari, J. A. Byrne, et al., Appl. Catal. B 125, 331 (2012). https://doi.org/10.1016/j.apcatb.2012.05.036

    Article  CAS  Google Scholar 

  4. D. V. Bavykin, J. M. Friedrich, and F. C. Walsh, Adv. Mater. 18, 2807 (2006). https://doi.org/10.1002/adma.200502696

    Article  CAS  Google Scholar 

  5. O. V. Magdysyuk, F. Adams, H.-P. Liermann, et al., Int. J. Psychosoc. Rehabil. 20 (2), 1 (2016). https://doi.org/10.1039/c8tb00149a

    Article  CAS  Google Scholar 

  6. X. Wang, Y. Zhao, K. Molhave, et al., Nanomaterials 7, 382 (2017). https://doi.org/10.3390/nano7110382

    Article  CAS  PubMed Central  Google Scholar 

  7. A. V. Raghu, K. K. Karuppanan, and B. Pullithadathil, ACS Sensors 3, 1811 (2018). https://doi.org/10.1021/acssensors.8b00544

    Article  CAS  PubMed  Google Scholar 

  8. F. Yang, J. Zhu, X. Zou, et al., Ceram. Int. 44, 1078 (2018). https://doi.org/10.1016/j.ceramint.2017.10.052

    Article  CAS  Google Scholar 

  9. G. F. Cabeza, F. Schipani, T. F. Garetto, et al., J. Electroceram. 40, 72 (2017). https://doi.org/10.1007/s10832-017-0100-3

    Article  CAS  Google Scholar 

  10. P. Rassu, L. Malfatti, D. Carboni, et al., J. Mater. Chem. C 5, 11815 (2017). https://doi.org/10.1039/c7tc03397d

    Article  CAS  Google Scholar 

  11. S. K. Hyun, S. Choi, G.-J. Sun, et al., J. Nanosci. Nanotechnol. 17, 4099 (2017). https://doi.org/10.1166/jnn.2017.13409

    Article  CAS  Google Scholar 

  12. X. Peng, Z. He, K. Yang, et al., Appl. Surf. Sci. 360, 698 (2016). https://doi.org/10.1016/j.apsusc.2015.11.048

    Article  CAS  Google Scholar 

  13. H. Wang, Q. Sun, Y. Yao, et al., Ceram. Int. 42, 8565 (2016). https://doi.org/10.1016/j.ceramint.2016.02.084

    Article  CAS  Google Scholar 

  14. Z. Ye, H. Tai, T. Xie, et al., Sensors Actuators, B: Chem. 223, 149 (2016). https://doi.org/10.1016/j.snb.2015.09.102

    Article  CAS  Google Scholar 

  15. K. Muthukrishnan, M. Vanaraja, S. Boomadevi, et al., J. Mater. Sci. Mater. Electron. 26, 5135 (2015). https://doi.org/10.1007/s10854-015-3041-0

    Article  CAS  Google Scholar 

  16. S. Y. Jeong, J. S. Kim, and J. H. Lee, Adv. Mater. 2002075, 1 (2020). https://doi.org/10.1002/adma.202002075

    Article  CAS  Google Scholar 

  17. H. J. Kim and J. H. Lee, Sensors Actuators, B: Chem. 192, 607 (2014). https://doi.org/10.1016/j.snb.2013.11.005

    Article  CAS  Google Scholar 

  18. P. Persson, R. Bergstrom, and S. Lunell, J. Phys. Chem. B 104, 10348 (2002). https://doi.org/10.1021/jp002550p

    Article  CAS  Google Scholar 

  19. E. M. Samsudin and HamidS. B. Abd, Appl. Surf. Sci. 391, 326 (2017). https://doi.org/10.1016/j.apsusc.2016.07.007

    Article  CAS  Google Scholar 

  20. M. Zhang, T. Ning, S. Zhang, et al., Mater. Sci. Semicond. Proc. 17, 149 (2014). https://doi.org/10.1016/j.mssp.2013.09.014

    Article  CAS  Google Scholar 

  21. G. Neri, S. Santangelo, N. Donato, et al., Int. J. Hydrogen En. 37, 1842 (2011). https://doi.org/10.1016/j.ijhydene.2011.10.017

    Article  CAS  Google Scholar 

  22. S. K. Hazra, S. R. Tripathy, I. Alessandri, et al., Mater. Sci. Eng. B: Solid-State Mater. Adv. Technol. 131, 135 (2006). https://doi.org/10.1016/j.mseb.2006.04.004

    Article  CAS  Google Scholar 

  23. I.-D. Kim, S.-J. Lee, T. Zyung, et al., Sens., Actuators, B: Chem. 149, 301 (2010). https://doi.org/10.1016/j.snb.2010.06.033

    Article  CAS  Google Scholar 

  24. L. Yin, L. Zhang, N. Lun, et al., Langmuir 26, 12841 (2010). https://doi.org/10.1021/la100910u

    Article  CAS  PubMed  Google Scholar 

  25. E. P. Simonenko, N. P. Simonenko, G. P. Kopitsa, et al., Mater. Chem. Phys. 225, 347 (2019). https://doi.org/10.1016/j.matchemphys.2018.12.102

    Article  CAS  Google Scholar 

  26. A. S. Mokrushin, E. P. Simonenko, N. P. Simonenko, et al., Appl. Surf. Sci. 463, 197 (2019). https://doi.org/10.1016/j.apsusc.2018.08.208

    Article  CAS  Google Scholar 

  27. V. G. Sevastyanov, E. P. Simonenko, N. P. Simonenko, et al., Mendeleev Commun. 28, 164 (2018). https://doi.org/10.1016/j.mencom.2018.03.018

    Article  CAS  Google Scholar 

  28. E. P. Simonenko, A. S. Mokrushin, N. P. Simonenko, et al., Thin Solid Films 670, 46 (2019). https://doi.org/10.1016/j.tsf.2018.12.004

    Article  CAS  Google Scholar 

  29. A. S. Mokrushin, E. P. Simonenko, N. P. Simonenko, et al., J. Sol–gel Sci. Technol. 92, 415 (2019). https://doi.org/10.1007/s10971-019-04979-4

    Article  CAS  Google Scholar 

  30. Y. Deng, Semiconducting Metal Oxides for Gas Sensing (Elsevier, 2019). https://doi.org/10.1007/978-981-13-5853-1

  31. H. Ji, W. Zeng, and Y. Li, Nanoscale 11, 22664 (2019). https://doi.org/10.1039/c9nr07699a

    Article  CAS  PubMed  Google Scholar 

  32. D. Degler, U. Weimar, and N. Barsan, ACS Sensors 4, 2228 (2019). https://doi.org/10.1021/acssensors.9b00975

    Article  CAS  PubMed  Google Scholar 

  33. R. A. Potyrailo, Chem. Rev. 116, 11877 (2016). https://doi.org/10.1021/acs.chemrev.6b00187

    Article  CAS  PubMed  Google Scholar 

  34. F. Peng, Y. Sun, W. Yu, et al., Nanomaterials 10, 1 (2020). https://doi.org/10.3390/nano10040774

    Article  CAS  Google Scholar 

  35. N. S. Ramgir, S. K. Ganapathi, M. Kaur, et al., Sensors Actuators, B: Chem. 15, 90 (2010). https://doi.org/10.1016/j.snb.2010.09.043

    Article  CAS  Google Scholar 

  36. S. Li, L. Xie, M. He, et al., Sensors Actuators, B: Chem. 310, 127828 (2020). https://doi.org/10.1016/j.snb.2020.127828

    Article  CAS  Google Scholar 

  37. D. Barreca, G. Carraro, E. Comini, et al., J. Phys. Chem. C 115, 10510 (2011). https://doi.org/10.1021/jp202449k

    Article  CAS  Google Scholar 

  38. S. W. Choi, A. Katoch, J. H. Kim, et al., J. Mater. Chem. C 2, 8911 (2014). https://doi.org/10.1039/c4tc01182a

    Article  CAS  Google Scholar 

  39. J. Deng, L. Wang, Z. Lou, et al., J. Mater. Chem. A 2, 9030 (2014). https://doi.org/10.1039/c4ta00160e

    Article  CAS  Google Scholar 

  40. J. H. Lee, J. H. Kim, and S. S. Kim, Appl. Surf. Sci. 448, 489 (2018). https://doi.org/10.1016/j.apsusc.2018.04.115

    Article  CAS  Google Scholar 

  41. W. Maziarz, Appl. Surf. Sci. 480, 361 (2019). ttps://doi.org/https://doi.org/10.1016/j.apsusc.2019.02.139

  42. X. Wang, Y. Li, Z. Li, et al., Sensors Actuators, B: Chem. 301, 127019 (2019). https://doi.org/10.1016/j.snb.2019.127019

    Article  CAS  Google Scholar 

  43. G. Wang, Z. Fu, T. Wang, et al., Sensors Actuators, B: Chem. 295, 70 (2019). https://doi.org/10.1016/j.snb.2019.05.075

    Article  CAS  Google Scholar 

  44. T. Vilic and E. Llobet, Proc. Eng. 168, 206 (2016). https://doi.org/10.1016/j.proeng.2016.11.163

    Article  CAS  Google Scholar 

  45. L. G. Bloor, J. Manzi, R. Binions, et al., Chem. Mater. 24, 2864 (2012). https://doi.org/10.1021/cm300596c

    Article  CAS  Google Scholar 

  46. T. Stoycheva, F. E. Annanouch, I. Gracia, et al., Sensors Actuators, B: Chem. 198, 210 (2014). https://doi.org/10.1016/j.snb.2014.03.040

    Article  CAS  Google Scholar 

  47. A. S. Mokrushin, N. A. Fisenko, P. Y. Gorobtsov, et al., Talanta 221, 121455 (2021). https://doi.org/10.1016/j.talanta.2020.121455

    Article  CAS  PubMed  Google Scholar 

  48. T. L. Simonenko, N. P. Simonenko, P. Y. Gorobtsov, et al., J. Alloys Compd. 832, 154957 (2020). https://doi.org/10.1016/j.jallcom.2020.154957

    Article  CAS  Google Scholar 

  49. A. S. Mokrushin, E. P. Simonenko, N. P. Simonenko, et al., Ionics (Kiel) 25, 1259 (2019). https://doi.org/10.1007/s11581-018-2820-z

    Article  CAS  Google Scholar 

  50. A. S. Mokrushin, E. P. Simonenko, N. P. Simonenko, et al., Russ. J. Inorg. Chem. 63, 851 (2018). https://doi.org/10.1134/s0036023618070197

    Article  CAS  Google Scholar 

  51. A. S. Mokrushin, E. P. Simonenko, N. P. Simonenko, et al., J. Alloys Compd. 773, 1023 (2019). https://doi.org/10.1016/j.jallcom.2018.09.274

    Article  CAS  Google Scholar 

  52. T. L. Simonenko, N. P. Simonenko, A. S. Mokrushin, et al., Ceram. Int. 46, 121 (2020). https://doi.org/10.1016/j.ceramint.2019.08.241

    Article  CAS  Google Scholar 

  53. I. A. Nagornov, A. S. Mokrushin, E. P. Simonenko, et al., Ceram. Int. 46, 7756 (2020). https://doi.org/10.1016/j.ceramint.2019.11.279

    Article  CAS  Google Scholar 

  54. A. S. Mokrushin, V. S. Popov, N. P. Simonenko, et al., Russ. J. Inorg. Chem. 62, 695 (2017). https://doi.org/10.1134/s0036023617060213

    Article  CAS  Google Scholar 

  55. A. A. Mikhaylov, A. G. Medvedev, T. A. Tripol’Skaya, et al., Dalton Trans. 46, 16171 (2017). https://doi.org/10.1039/c7dt03104a

    Article  CAS  PubMed  Google Scholar 

  56. I. A. Nagornov, T. Maeder, N. T. Kuznetsov, et al., Russ. J. Inorg. Chem. 63, 1519 (2018). https://doi.org/10.1134/s0036023618110189

    Article  CAS  Google Scholar 

  57. T. Maeder, N. P. Simonenko, I. S. Vlasov, et al., Russ. J. Inorg. Chem. 62, 1415 (2017). https://doi.org/10.1134/s0036023617110195

    Article  CAS  Google Scholar 

  58. C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, Nat. Methods, 671 (2012). https://doi.org/10.1038/nmeth.2089

  59. D. A. H. Hanaor and C. C. Sorrell, J. Mater. Sci. 46, 855 (2011). https://doi.org/10.1007/s10853-010-5113-0

    Article  CAS  Google Scholar 

  60. A. Roy and A. K. Sood, Pramana J. Phys. 44, 201 (1995). https://doi.org/10.1007/BF02848471

    Article  CAS  Google Scholar 

  61. A. Gibaud, M. Topic, G. Corbel, et al., J. Alloys Compd. 484, 168 (2009). https://doi.org/10.1016/j.jallcom.2009.05.050

    Article  CAS  Google Scholar 

  62. H. Bin. Lu, Y. Z. Zhou, S. Vongehr, et al., Sci. China Technol. Sci. 55, 894 (2012). https://doi.org/10.1007/s11431-011-4706-4

    Article  CAS  Google Scholar 

  63. P. Praveen, G. Viruthagiri, S. Mugundan, et al., Spectrochim. Acta A 117, 622 (2014). https://doi.org/10.1016/j.saa.2013.09.037

    Article  CAS  Google Scholar 

  64. Y. Q. Fu, Z. Wang, K. Sun, et al., J. Alloys Compd. 682, 647 (2016). https://doi.org/10.1016/j.jallcom.2016.04.311

    Article  CAS  Google Scholar 

  65. W. Liu, J. Wu, Y. Yang, et al., J. Mater. Sci. Mater. Electron. 29, 4624 (2018). https://doi.org/10.1007/s10854-017-8413-1

    Article  CAS  Google Scholar 

  66. C. Han, X. Li, C. Shao, et al., Sensors Actuators, B: Chem. 285, 495 (2019). https://doi.org/10.1016/j.snb.2019.01.077

    Article  CAS  Google Scholar 

  67. S. K. Ganapathi, M. Kaur, R. Singh, et al., ACS Appl. Nano Mater. 2, 6726 (2019). https://doi.org/10.1021/acsanm.9b01637

    Article  CAS  Google Scholar 

  68. Y. Duan, L. Pirolli, and A. V. Teplyakov, Sensors Actuators, B: Chem. 235, 213 (2016). https://doi.org/10.1016/j.snb.2016.05.014

    Article  CAS  Google Scholar 

  69. T. Yu, X. Cheng, X. Zhang, et al., J. Mater. Chem. A 3, 11991 (2015). https://doi.org/10.1039/c5ta00811e

    Article  CAS  Google Scholar 

  70. M. A. Carpenter, S. Mathur, and A. Kolmakov, Metal Oxide Nanomaterials for Chemical Sensors (New York, Springer, 2013). https://doi.org/10.1007/978-1-4614-5395-6

  71. N. S. Ramgir, S. K. Ganapathi, M. Kaur, et al., Sensors Actuators, B: Chem. 151, 90 (2010). https://doi.org/10.1016/j.snb.2010.09.043

    Article  CAS  Google Scholar 

  72. R. Ramamoorthy, P. K. Dutta, and S. A. Akbar, J. Mater. Sci. 38, 4271 (2003). https://doi.org/10.1023/A:1026370729205

    Article  CAS  Google Scholar 

Download references

Funding

The study was financially supported by the Russian Foundation for Basic Research (project no. 18-03-00992, development of a two-stage method for the synthesis of nanocrystalline TiO2), a grant from the President of the Russian Federation (MK-1023.2020.3, study of the chemoresistive properties of nanocrystalline composites), and within the framework of the State Assignment of the Institute of General and Inorganic Chemistry, Russian Academy of Sciences in the field of fundamental scientific research (development of the AACVD method for modifying the surface of the receptor material).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Mokrushin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Avdeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokrushin, A.S., Gorban, Y.M., Simonenko, N.P. et al. Synthesis and Gas-Sensitive Chemoresistive Properties of TiO2:Cu Nanocomposite. Russ. J. Inorg. Chem. 66, 594–602 (2021). https://doi.org/10.1134/S0036023621040173

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023621040173

Keywords:

Navigation