Skip to main content
Log in

Problems and Prospects of Studying Schooling Behavior of Fish

  • Published:
Journal of Ichthyology Aims and scope Submit manuscript

Abstract

The problems and prospects of studying schooling behavior of fish have been considered. Areas that remain little developed or have controversial and contradictory results have been noted: the hydrodynamics and energetics of fish swimming in a school, the mechanisms of fish interaction and the dissemination of information within a school, the principles of forming a coordinated school response to external stimuli and the rapid decay of the reaction, interaction between different schools during their collision or when being part of large aggregations of many schools, patterns of rapid change in the forms of a school. It has been shown that there are no clear ideas about the formation of mechanisms in the ontogeny of fish that underlie coordinated schooling behavior. The sensory base of schooling behavior requires further study. The origin and evolution of schooling behavior and the formation of emergent properties of a school based on individual actions of fish remain at the level of assumptions and hypotheses. The interspecies differences in the schooling behavior of fish, the interaction of schooling fish with fishing gear and adaptation to them are poorly studied. Attention has been drawn to the need for verification in nature of information obtained in laboratory conditions and on aquarium fish that have undergone selection. The necessity of using new technologies, devices, methods of mathematical modeling and other approaches for the intensification of experimental research has been emphasized. Knowledge of the schooling behavior of fish is important for elucidating the general patterns of social behavior of large associations of animals. The development of research is hampered by the lack of generally accepted terminology and quantitative criteria for schooling behavior, which would make it possible to adequately assess, compare, and analyze it. An exhaustive definition of a fish school has been given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Abaid, N. and Porfiri, M., Fish in a ring: Spatio-temporal pattern formation in one-dimensional animal groups, J. R. Soc. Interface, 2010, vol. 7, no. 51, pp. 1441–1453. https://doi.org/10.1098/rsif.2010.0175

    Article  PubMed  PubMed Central  Google Scholar 

  2. Abaid, N., Marras, S., Fitzgibbons, C., and Porfiri, M., Modulation of risk-taking behaviour in golden shiners (Notemigonus crysoleucas) using robotic fish, Behav. Processes, 2013, vol. 100, pp. 9–12. https://doi.org/10.1016/j.beproc.2013.07.010

    Article  PubMed  Google Scholar 

  3. Anders, N., Breen, M., Saltskar, J., et al., Behavioural and welfare implications of a new slipping methodology for purse seine fisheries in Norwegian waters, PLOS ONE, 2019, vol. 14, no. 3, Article e0213031. https://doi.org/10.1371/journal.pone.0213031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Beyer, K., Gozlan, R.E., and Copp, G.H., Social network properties within a fish assemblage invaded by non-native sunbleak Leucaspius delineates, Ecol. Model., 2010, vol. 221, no. 17, pp. 2118–2122. https://doi.org/10.1016/j.ecolmodel.2010.06.002

    Article  Google Scholar 

  5. Bierbach, D., Monck, H.J., Lukas, J., et al., Guppies prefer to follow large (robot) leaders irrespective of own size, Front. Bioeng. Biotechnol., 2020, vol. 8, Article 441. https://doi.org/10.3389/fbioe.2020.00441

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bisazza, A., Cantalupo, C., Capocchiano, M., and Vallortigara, G., Population lateralisation and social behaviour: A study with 16 species of fish, Laterality, 2000, vol. 5, no. 3, pp. 269–284. https://doi.org/10.1080/713754381

    Article  CAS  PubMed  Google Scholar 

  7. Brehmer, P., Gerlotto, F., Laurent, C., et al., Schooling behaviour of small pelagic fish: Phenotypic expression of independent stimuli, Mar. Ecol. Proc. Ser., 2007, vol. 334, pp. 263–272. https://doi.org/10.3354/meps334263

    Article  Google Scholar 

  8. Burford, B.P., Williams, R.R., Demetras, N.J., et al., The limits of convergence in the collective behavior of competing marine taxa, Ecol. Evol., 2022, vol. 12, no. 3, Article e8747. https://doi.org/10.1002/ece3.8747

    Article  PubMed  PubMed Central  Google Scholar 

  9. Butail, S., Bartolini, T., and Porfiri, M., Collective response of zebrafish shoals to a free-swimming robotic fish, PLOS ONE, 2013, vol. 8, no. 10, Article e76123. https://doi.org/10.1371/journal.pone.0076123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Butail, S., Polverino, G., Phamduy, P., et al., Influence of robotic shoal size, configuration, and activity on zebrafish behavior in a free-swimming environment, Behav. Brain Res., 2014, vol. 275, pp. 269–280. https://doi.org/10.1016/j.bbr.2014.09.015

    Article  PubMed  Google Scholar 

  11. Buyakas, V.I., Darkov, A.A., Radakov, D.V., and Chekulaev, Yu.V., Mathematical model of the movement of a fish school, Vopr. Ikhtiol., 1978, vol. 18, no. 5, pp. 924–934.

    Google Scholar 

  12. Ceron, S., O’Keeffe, K., and Petersen, K., Diverse behaviors in non-uniform chiral and non-chiral swarmalators, Nat. Commun., 2023, vol. 14, no. 1, Article 940. https://doi.org/10.1038/s41467-023-36563-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen, Y., Liu, H., Yang, L., et al., A lightweight detection method for the spatial distribution of underwater fish school quantification in intensive aquaculture, Aquacult. Intern., 2023, vol. 31, no. 1, pp. 31–52. https://doi.org/10.1007/s10499-022-00963-y

    Article  CAS  Google Scholar 

  14. Chivers, D.P., McCormick, M.I., Allan, B.J.M., et al., At odds with the group: Changes in lateralization and escape performance reveal conformity and conflict in fish schools, Proc. R. Soc. B., 2016, vol. 283, Article 20161127. https://doi.org/10.1098/rspb.2016.1127

    Article  PubMed  PubMed Central  Google Scholar 

  15. Couzin, I.D., Krause, J., James, R., et al., Collective memory and spatial sorting in animal groups, J. Theor. Biol., 2002, vol. 218, no. 1, pp. 1–11. https://doi.org/10.1006/jtbi.2002.3065

    Article  PubMed  Google Scholar 

  16. Croft, D.P., James, R., Ward, A.J.W., et al., Assortative interaction and social networks in fish, Oecologia, 2005, vol. 143, no. 2, pp. 211–219. https://doi.org/10.1007/s00442-004-1796-8

    Article  CAS  PubMed  Google Scholar 

  17. Dagorn, L. and Holland, K., Report of the international workshop on current status and new directions for studying schooling and aggregation behavior of pelagic fish, PFRP (Pelagic Fish. Res. Programm), 2003, vol. 8, no. 3, pp. 7–8.

  18. Delcourt, J. and Poncin, P., Shoals and schools: Back to the heuristic definitions and quantitative references, Rev. Fish Biol. Fish., 2012, vol. 22, no. 3, pp. 595–619. https://doi.org/10.1007/s11160-012-9260-z

    Article  Google Scholar 

  19. FAO, The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation, Rome: FAO, 2022. https://doi.org/10.4060/cc0461en

  20. Faria, J.J., Dyer, J.R.G., Clement, R.O., et al., A novel method for investigating the collective behaviour of fish: Introducing “Robofish,” Behav. Ecol. Sociobiol., 2010, vol. 64, no. 8, pp. 1211–1218. https://doi.org/10.1007/s00265-010-0988-y

    Article  Google Scholar 

  21. Faucher, K., Parmentier, E., Becco, C., et al., Fish lateral system is required for accurate control of shoaling behaviour, Anim. Behav., 2010, vol. 79, no. 3, pp. 679–687. https://doi.org/10.1016/j.anbehav.2009.12.020

    Article  Google Scholar 

  22. Gautrais, J., Jost, J., and Theraulaz, G., Key behavioural factors in self-organised fish school model, Ann. Zool. Fenn., 2008, vol. 45, no. 5, pp. 415–428. https://doi.org/10.5735/086.045.0505

    Article  Google Scholar 

  23. Gómez-Nava, L., Lange, R.T., Klamser, P.P., et al., fish shoals resemble a stochastic excitable system driven by environmental perturbations, Nat. Phys., 2023, vol. 19, pp. 663–669. https://doi.org/10.1038/s41567-022-01916-1

    Article  CAS  Google Scholar 

  24. Graham, N., Jones, E.G., and Reid, D.G., Review of technological advances for the study of fish behaviour in relation to demersal fishing trawls, ICES J. Mar. Sci., 2004, vol. 61, no. 7, pp. 1036–1043. https://doi.org/10.1016/j.icesjms.2004.06.006

    Article  Google Scholar 

  25. Gunji, Y.-P., Kusunoki, Y., Kitabayashi, N., et al., Dual interaction producing both territorial and schooling behavior in fish, Biosystems, 1999, vol. 50, no. 1, pp. 27–47. https://doi.org/10.1016/S0303-2647(98)00085-9

    Article  CAS  PubMed  Google Scholar 

  26. Handegard, N.O., Tenningen, M., Howarth, K., et al., Effects on schooling function in mackerel of sub-lethal capture related stressors: Crowding and hypoxia, PLOS ONE, 2017, vol. 12, no. 12, Article e0190259. https://doi.org/10.1371/journal.pone.0190259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hemelrijk, C.K. and Hildenbrandt, H., Self-organized shape and frontal density of fish schools, Ethology, 2008, vol. 114, no. 3, pp. 245–254. https://doi.org/10.1111/j.1439-0310.2007.01459.x

    Article  Google Scholar 

  28. Hemelrijk, C.K., Reid, D.A.P., Hildenbrandt, H., and Padding, J.T., The increased efficiency of fish swimming in a school, Fish Fish., 2015, vol. 16, no. 3, pp. 511–521. https://doi.org/10.1111/faf.12072

    Article  Google Scholar 

  29. Hensor, E., Couzin, I.D., James, R., and Krause, J., Modelling density-dependent fish shoal distributions in the laboratory and field, Oikos, 2005, vol. 110, no. 2, pp. 344–352. https://doi.org/10.1111/j.0030-1299.2005.13513.x

    Article  Google Scholar 

  30. Herbert-Read, J.E., Perna, A., Mann, R.P., et al., Inferring the rules of interaction of shoaling fish, PNAS, 2011, vol. 108, no. 46, pp. 18726–18731. https://doi.org/10.1073/pnas.1109355108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Herbert-Read, J.E., Krause, S., Morrell, L.J., et al., The role of individuality in collective group movement, Proc. R. Soc. B., 2013, vol. 280, no 1752, Article 20122564. https://doi.org/10.1098/rspb.2012.2564

  32. Herbert-Read, J.E., Romenskyy, M., and Sumpter, D.J.T., A Turing test for collective motion, Biol. Lett., 2015, vol. 11, no. 12, Article 20150674. https://doi.org/10.1098/rsbl.2015.0674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Huse, G.H., Railsback, S.R., and Feronö, A., Modelling changes in migration pattern of herring: Collective behaviour and numerical domination, J. Fish. Biol., 2002, vol. 60, no. 3, pp. 571–582. https://doi.org/10.1006/jfbi.2002.1874

    Article  Google Scholar 

  34. Ioannou, C.C., Swarm intelligence in fish? The difficulty in demonstrating distributed and self-organised collective intelligence in (some) animal groups, Behav. Processes, 2017, vol. 141, pt. 2, pp. 141–151. https://doi.org/10.1016/j.beproc.2016.10.005

    Article  PubMed  Google Scholar 

  35. Ioannou, C.C., Guttal, V., and Couzin, I.D., Predatory fish select for coordinated collective motion in virtual prey, Science, 2012, vol. 337, no. 6099, pp. 1212–1215. https://doi.org/10.1126/science.1218919

    Article  CAS  PubMed  Google Scholar 

  36. Jhawar, J., Morris, R.G., Amith-Kumar, U.R., et al., Noise-induced schooling of fish, Nat. Phys., 2020, vol. 16, no. 4, pp. 488–493. https://doi.org/10.1038/s41567-020-0787-y

    Article  CAS  Google Scholar 

  37. Jolles, J.W., King, A.J., and Killen, S.S., The role of individual heterogeneity in collective animal behavior, Trends Ecol. Evol., 2019, vol. 35, no. 3, pp. 278–291. https://doi.org/10.1016/j.tree.2019.11.001

    Article  PubMed  Google Scholar 

  38. Katz, Y., Tunstrøm, K., Ioannou, C.C., et al., Inferring the structure and dynamics of interactions in schooling fish, PNAS, 2011, vol. 108, no. 46, pp. 18720–18725. https://doi.org/10.1073/pnas.1107583108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Krause, J. and Ruxton, G.D., Living in Groups, Oxford: Oxford Univ. Press, 2002.

    Book  Google Scholar 

  40. Krause, J., Butlin, R.K., Peuhkuri, N., and Pritchard, V.L., The social organization of fish shoals: A test of the predictive power of laboratory experiments for the field, Biol. Rev., 2000, vol. 75, no. 4, pp. 477–501. https://doi.org/10.1111/j.1469-185X.2000.tb00052.x

    Article  CAS  PubMed  Google Scholar 

  41. Kukhorenko, K.G., Formation of defensive reflexes on fishing gear in mackerel in the Atlantic, in Izuchenie povedeniya ryb v svyazi s sovershenstvovaniem tekhniki ikh lova (Study of Fish Behavior in Connection with the Improvement of Their Fishing Technique), Moscow: Nauka, 1977, pp. 91–97.

  42. Kunz, Y. and Hemelrijk, C.K., Artificial fish schools: Collective effects of school size, body size, and body form, Artif. Life, 2003, vol. 9, no. 3, pp. 237–253. https://doi.org/10.1162/106454603322392451

    Article  PubMed  Google Scholar 

  43. Landgraf, T., Bierbach, D., Nguyen, H., et al., RoboFish: Increased acceptance of interactive robotic fish with realistic eyes and natural motion patterns by live trinidadian guppies, Bioinspir. Biomim., 2016, vol. 11, no. 1, Article 015001. https://doi.org/10.1088/1748-3190/11/1/015001

    Article  PubMed  Google Scholar 

  44. Larrieu, R., Moreau, P., Graff, C., et al., Forcing a fish school through a bottleneck: A smooth evacuation, J. R. Soc. Interface, 2022. https://doi.org/10.48550/arXiv.2212.12514

  45. Lopez, U., Gautrais, J., Couzin, I.D., and Theraulaz, G., From behavioural analyses to models of collective motion in fish schools, Interface Focus, 2012, vol. 2, no. 6, pp. 693–707. https://doi.org/10.1098/rsfs.2012.0033

    Article  PubMed  PubMed Central  Google Scholar 

  46. MacGregor, H.E.A., Herbert-Read, J.E. and Ioannou, C.C., Information can explain the dynamics of group order in animal collective behavior, Nat. Commun., 2020, vol. 11, no. 1, Article 2737. https://doi.org/10.1038/s41467-020-16578-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Makris, N.C., Ratilal, P., Jagannathan, S., et al., Critical population density triggers rapid formation of vast oceanic fish shoals, Science, 2009, vol. 323, no. 5922, pp. 1734–1737. https://doi.org/10.1126/science.1169441

    Article  CAS  PubMed  Google Scholar 

  48. Marras, S. and Porfiri, M., Fish and robots swimming together: Attraction towards the robot demands biomimetic locomotion, J. R. Soc. Interface, 2012, vol. 9, no. 73, pp. 1856–1868. https://doi.org/10.1098/rsif.2012.0084

    Article  PubMed  PubMed Central  Google Scholar 

  49. Marras, S., Batty, R.S., and Domenici, P., Information transfer and antipredator maneuvers in schooling herring, Adapt. Behav., 2012, vol. 20, no. 1, pp. 44–56. https://doi.org/10.1177/1059712311426799

    Article  Google Scholar 

  50. Marras, S., Killen, S.S., Lindström, J., et al., Fish swimming in schools save energy regardless of their spatial position, Behav. Ecol. Sociobiol., 2015, vol. 69, no. 2, pp. 219–226. https://doi.org/10.1007/s00265-014-1834-4

    Article  PubMed  Google Scholar 

  51. Martignac, F., Daroux, A., Bagliniere, J.-L., et al., The use of acoustic cameras in shallow waters: New hydroacoustic tools for monitoring migratory fish population. A review of DIDSON technology, Fish Fish., 2014, vol. 16, no. 3, pp. 486–510. https://doi.org/10.1111/faf.12071

    Article  Google Scholar 

  52. Mayer, P.C., Economic models of fish shoal (school) size: A near comprehensive view of single species shoaling strategy, J. Bioecon., 2010, vol. 12, no. 2, pp. 119–143. https://doi.org/10.1007/s10818-010-9084-7

    Article  Google Scholar 

  53. Miller, N. and Gerlai, R., Quantification of shoaling behaviour in zebrafish (Danio rerio), Behav. Brain Res., 2007, vol. 184, no. 2, pp. 157–166. https://doi.org/10.1016/j.bbr.2007.07.007

    Article  PubMed  Google Scholar 

  54. Niwa, H.-S., Self-organizing dynamic model of fish schooling, J. Theor. Biol., 1994, vol. 171, no. 2, pp. 123–136. https://doi.org/10.1006/jtbi.1994.1218

    Article  Google Scholar 

  55. Nonacs, P., Smith, P.E., and Mangel, M., Modeling foraging in the northern anchovy (Engraulis mordax): individual behavior can predict school dynamics and population biology, Can. J. Fish. Aquat. Sci., 1998, vol. 55, no. 5, pp. 1179–1188. https://doi.org/10.1139/f98-010

    Article  Google Scholar 

  56. Oleskin, A.V., Network structures in biological systems, Biol. Bull. Rev., 2014, vol. 4, no. 1, pp. 47–70. https://doi.org/10.1134/S2079086414010034

    Article  Google Scholar 

  57. Oppedal, F., Dempster, T., and Stien, L.H., Environmental drivers of Atlantic salmon behaviour in sea-cages: A review, Aquaculture, 2011, vol. 311, nos. 1-4, pp. 1–18. https://doi.org/10.1016/j.aquaculture.2010.11.020

    Article  Google Scholar 

  58. Oza, A.U., Ristroph, L., and Shelley, M.J., lattices of hydrodynamically interacting flapping swimmers, Phys. Rev. X., 2019, vol. 9, no. 4, Article 041024. https://doi.org/10.1103/PhysRevX.9.041024

    Article  CAS  Google Scholar 

  59. Park, S.-G., Zhou, J., Dong, S., et al., Characteristics of the flow field inside and around a square fish cage considering the circular swimming pattern of a farmed fish school: Laboratory experiments and field observations, Ocean Eng., 2022, vol. 261, Article 112097. https://doi.org/10.1016/j.oceaneng.2022.112097

    Article  Google Scholar 

  60. Parr, A.E., A contribution to the theoretical analyses of the schooling behaviour of fishes, Occ. Pap. Bingham Oceanogr. Coll., 1927, vol. 1, pp. 1–32.

    Google Scholar 

  61. Parrish, J.K. and Edelstein-Keshet, L., Complexity, pattern, and evolutionary trade-offs in animal aggregation, Science, 1999, vol. 284, no. 5411, pp. 99–101. https://doi.org/10.1126/science.284.5411.99

    Article  CAS  PubMed  Google Scholar 

  62. Parrish, J.K., Viscido, S.V., and Grünbaum, D., Self-organized fish schools: An examination of emergent properties, Biol. Bull., 2002, vol. 202, no. 3, pp. 296–305. https://doi.org/10.2307/1543482

    Article  PubMed  Google Scholar 

  63. Phamduy, P., Polverino, G., Fuller, R.C., and Porfiri, M., Fish and robot dancing together: Bluefin killifish females respond differently to the courtship of a robot with varying color morphs, Bioinspir. Biomim., 2014, vol. 9, no. 3, Article 036021. https://doi.org/10.1088/1748-3182/9/3/036021

    Article  CAS  PubMed  Google Scholar 

  64. Pitcher, T.J., Fish shoaling behaviour as a key factor in the resilience of fisheries: shoaling behaviour alone can generate range collapse in fisheries, Proc. 2nd World Fisheries Congress “Developing and Sustaining World Fisheries Resources: The State of Science and Management,” Collingwood: CSIRO, 1997, pp. 143–148.

  65. Pitcher, T.J., Fish schooling, in Encyclopedia of Ocean Sciences, San Diego: Acad. Press, 2001, pp. 975–987. https://doi.org/10.1006/rwos.2001.0022

  66. Polverino, G. and Porfiri, M., Mosquitofish (Gambusia affinis) responds differentially to a robotic fish of varying swimming depth and aspect ratio, Behav. Brain Res., 2013a, vol. 250, pp. 133–138. https://doi.org/10.1016/j.bbr.2013.05.008

    Article  PubMed  Google Scholar 

  67. Polverino, G. and Porfiri, M., Zebrafish (Danio rerio) behavioural response to bioinspired robotic fish and mosquitofish (Gambusia affinis), Bioinspir. Biomim., 2013b, vol. 8, no. 4, Article 044001. https://doi.org/10.1088/1748-3182/8/4/044001

    Article  PubMed  Google Scholar 

  68. Rieucau, G., Fernö, A., Ioannou, C.C., and Handegard, N.O., Towards of a firmer explanation of large shoal formation, maintenance and collective reactions in marine fish, Rev. Fish Biol. Fish., 2015, vol. 25, no. 1, pp. 21–37. https://doi.org/10.1007/s11160-014-9367-5

    Article  Google Scholar 

  69. Romano, D. and Stefanini, C., Individual neon tetras (Paracheirodon innesi, Myers) optimise their position in the group depending on external selective contexts: Lesson learned from a fish-robot hybrid school, Biosyst. Eng., 2021, vol. 204, pp. 170–180. https://doi.org/10.1016/j.biosystemseng.2021.01.021

    Article  CAS  Google Scholar 

  70. Romano, D. and Stefanini, C., Any colour you like: Fish interacting with bioinspired robots unravel mechanisms promoting mixed phenotype aggregations, Bioinspir. Biomim., 2022, vol. 17, no. 4, Article 045004. https://doi.org/10.1088/1748-3190/ac6848

    Article  Google Scholar 

  71. Romey, W.L., Real fish attack simulated plankton, Science, 2012, vol. 337, no. 6099, pp. 1181–1182. https://doi.org/10.1126/science.1228217

    Article  CAS  PubMed  Google Scholar 

  72. Rousseau, S., Gauthier, S., Neville, C., et al., Acoustic classification of juvenile Pacific salmon (Oncorhynchus spp) and Pacific herring (Clupea pallasii) schools using random forests, Front. Mar. Sci., 2022, vol. 9, Article 857645. https://doi.org/10.3389/fmars.2022.857645

    Article  Google Scholar 

  73. Ruzzante, D.E., Domestication effects on aggressive and schooling behavior in fish, Aquaculture, 1994, vol. 120, nos. 1–2, pp. l–24. https://doi.org/10.1016/0044-8486(94)90217-8

    Article  Google Scholar 

  74. Ruzzante, D.E. and Doyle, R.W., Evolution of social behavior in a resource-rich, structured environment: selection experiments with medaka (Oryzias latipes), Evolution, 1993, vol. 47, no. 2, pp. 456–470. https://doi.org/10.2307/2410064

    Article  PubMed  Google Scholar 

  75. Sadoul, B., Evouna, MenguesP., Friggens, N.C., et al., A new method for measuring group behaviours of fish shoals from recorded videos taken in near aquaculture conditions, Aquaculture, 2014, vol. 430, pp. 179–187. https://doi.org/10.1016/j.aquaculture.2014.04.008

    Article  Google Scholar 

  76. Shaw, E., Schooling fishes: The school, a truly egalitarian form of organization in which all members of the group are alike in influence, offers substantial benefits to its participants, Am. Sci., 1978, vol. 66, no. 2, pp. 166–175.

    Google Scholar 

  77. Soria, M., Freon, P., and Chabanet, P., Schooling properties of an obligate and a facultative fish species, J. Fish. Biol., 2007, vol. 71, no. 5, pp. 1257–1269. https://doi.org/10.1111/j.1095-8649.2007.01554.x

    Article  Google Scholar 

  78. Swain, D.T., Couzin, I.D., and Leonard, N.E., Real-time feedback controlled robotic fish for behavioral experiments with fish schools, Proc. IEEE, 2012, vol. 100, no. 1, pp. 150–163. https://doi.org/10.1109/JPROC.2011.2165449

    Article  Google Scholar 

  79. Tang, J.-Y. and Fu, S.-J., The relationship between personality and the collective motion of schooling fish, J. Ethol., 2020, vol. 38, no. 3, pp. 333–341. https://doi.org/10.1007/s10164-020-00655-1

    Article  CAS  Google Scholar 

  80. Tenningen, M., Vold, A., and Olsen, R.E., Behaviours of Atlantic herring and mackerel in a purse-seine net, observed using multibeam sonar, ICES J. Mar. Sci., 2012, vol. 69, no. 8, pp. 1523–1531. https://doi.org/10.1093/ICESJMS/FSS114

    Article  Google Scholar 

  81. Torgerson-White, L. and Sánchez-Suárez, W., Looking beyond the shoal: Fish welfare as an individual attribute, Animals, 2022, vol. 12, no. 19, Article 2592. https://doi.org/10.3390/ani12192592

    Article  PubMed  PubMed Central  Google Scholar 

  82. Vallortigara, G. and Rogers, L.J., Survival with an asymmetrical brain: Advantages and disadvantages of cerebral lateralization, Behav. Brain Sci., 2005, vol. 28, no. 4, pp. 575–589. https://doi.org/10.1017/S0140525X05000105

    Article  PubMed  Google Scholar 

  83. Viscido, S., Parrish, J.K., and Grünbaum, D., Individual behavior and emergent properties of fish schools: A comparison between observation and theory, Mar. Ecol. Proc. Ser., 2004, vol. 273, pp. 239–249. https://doi.org/10.3354/meps273239

    Article  Google Scholar 

  84. Wang, W., Escobedo, R., Sanchez, S., et al., The impact of individual perceptual and cognitive factors on collective states in a data-driven fish school model, PLOS Comput. Biol., 2022, vol. 18, no. 3, Article e1009437. https://doi.org/10.1371/journal.pcbi.1009437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ward, A.J.W., Herbert-Read, J.E., Sumpter, D.J.T., and Krause, J., Fast and accurate decisions through collective vigilance in fish shoals, PNAC, 2011, vol. 108, no. 6, pp. 2312–2315. https://doi.org/10.1073/pnas.1007102108

    Article  Google Scholar 

  86. Ward, A.J.W., Kent, M.I.A., and Webster, M.M., Social recognition and social attraction in group-living fishes, Front. Ecol. Evol., 2020, vol. 8, Article 15. https://doi.org/10.3389/fevo.2020.00015

    Article  Google Scholar 

  87. Wark, A.R., Greenwood, A.K., Taylor, E.M., et al., Heritable differences in schooling behavior among threespine stickleback populations revealed by a novel assay, PLOS ONE, 2011.vol. 6, no. 3, Article e18316. https://doi.org/10.1371/journal.pone.0018316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Watts, I., Nagy, M., Holbrook, R.I., et al., Validating two-dimensional leadership models on three-dimensionally structured fish schools, R. Soc. Open Sci., 2017, vol. 4, no. 1, Article 160804. https://doi.org/10.1098/rsos.160804

    Article  PubMed  PubMed Central  Google Scholar 

  89. Wilson, A.D.M., Croft, D.P., and Krause, J., Social networks in elasmobranchs and teleost fishes, Fish Fish., 2014, vol. 15, no. 4, pp. 676–689. https://doi.org/10.1111/faf.12046

    Article  Google Scholar 

  90. Xu, Z. and Qin, H., Fluid-structure interactions of cage based aquaculture: From structures to organisms, Ocean Eng., 2020, vol. 217, Article 107961. https://doi.org/10.1016/j.oceaneng.2020.107961

    Article  Google Scholar 

  91. Zheng, M., Kashimori, Y., Hoshino, O., et al., Behavior pattern (innate action) of individuals in fish schools generating efficient collective evasion from predation, J. Theor. Biol., 2005, vol. 235, no. 2, pp. 153–167. https://doi.org/10.1016/j.jtbi.2004.12.025

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors express their sincere gratitude to A.A. Kazhlaev, A.S. Patseva, and L.S. Alekseeva (Moscow State University), who provided great assistance in preparing the article for publication. The authors are sincerely grateful to P.I. Kirillov (Institute of Ecology and Evolution, Russian Academy of Sciences) for careful and constructive editing of the text and illustrations, which improved the quality of the article.

Funding

The article was prepared within the framework of scientific projects of the state assignment of the Moscow State University No. 121032300100-5 and the Institute of Ecology and Evolution, Russian Academy of Sciences No. 121122300056-3 in the Unified State Information System for Accounting the Results of Civil Research, Development and Technological Works.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Kasumyan.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

CONFLICT OF INTEREST

The author of this work declares that he has no conflicts of interest.

Additional information

Translated by S. Avodkova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasumyan, A.O., Pavlov, D.S. Problems and Prospects of Studying Schooling Behavior of Fish. J. Ichthyol. 63, 1393–1400 (2023). https://doi.org/10.1134/S0032945223070159

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0032945223070159

Keywords:

Navigation