Skip to main content
Log in

Implications of Physical Barriers on Longitudinal Connectivity in the Ganga River System through Morphological Assessment of Cirrhinus mrigala (Cyprinidae) Populations

  • Published:
Journal of Ichthyology Aims and scope Submit manuscript

Abstract

Studies on phenotypic variations among isolated populations help towards understanding the divergent natural selection acting on species. This study examines phenotypic variations among wild populations of an important Indian major carp, Cirrhinus mrigala (Hamilton, 1822) collected from ten locations throughout its distribution range in the Ganga River, India covering up- and downstream of all the four barrages (Bijnor, Narora, Kanpur and Farakka) to assess the implications of physical barriers on longitudinal connectivity of the Ganga River. Landmark based truss morphometric analysis and multivariate analyses were used to quantify the extent of morphological differences among populations. Post-hoc paired comparisons, discriminant function analysis and Mahalanobis distances revealed morphological differences between up and downstream individuals at all the four barrages. Phenotypic plasticity owing to habitat dissimilarities or due to environment and genotype interactions may play a vital role for these phenotypic differences between fish populations. This study is only a first step to recognize different stocks, and to identify fish movement between sites and therefore can be useful for developing suitable plan for conservation and restoration of fish populations in river ecosystem fragmented by physical barriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. AnvariFar, H., Khyabani, A., Farahmand, H., Vatandoust, S., AnvariFar, H., and Jahageerdar, S., Detection of morphometric differentiation between isolated up- and downstream populations of Siah Mahi (Capoeta capoeta gracilis) (Pisces: Cyprinidae) in the Tajan River (Iran), Hydrobiologia, 2011, vol. 673, pp. 41–52. https://doi.org/10.1007/s10750-011-0748-7

    Article  Google Scholar 

  2. Begg, G., Friedland, K.D., and Pearce, J.B., Stock identification-its role in stock assessment and fisheries management, Fish. Res., 1999, vol. 43, pp. 1–8. https://doi.org/10.1016/S0165-7836(99)00062-4

    Article  Google Scholar 

  3. Burnaby, T.P., Growth-invariant discriminant functions and generalized distances, Biometrics, 1966, vol. 22, pp. 96–110. https://doi.org/10.2307/2528217

    Article  Google Scholar 

  4. Chauhan, T., Lal, K.K., Mohindra, V., Singh, R.K., Punia, P., Gopalakrishnan, A., Sharma, P.C., and Lakra, W.S., Evaluating genetic differentiation in wild populations of the Indian major carp, Cirrhinus mrigala (Hamilton–Buchanan, 1882): evidence from allozyme and microsatellite markers, Aquaculture, 2007, vol. 269, pp. 135–149. https://doi.org/10.1016/j.aquaculture.2007.05.007

    Article  CAS  Google Scholar 

  5. Chondar, S.L., Biology of Finfish and Shellfish, Howrah: SCSC, 1999.

    Google Scholar 

  6. Craig, J.F., Large dams and freshwater fish biodiversity, in Dams, Ecosystem Functions and Environmental Restoration, Cape Town: World Com. Dams, 2001, p. 59.

    Google Scholar 

  7. Dakin, E.E., Porter, B.A., Freeman, B.J., and Long, J.M., Genetic Integrity of an Isolated Population of Shoal Bass (Micropterus cataractae) in the Upper Chattahoochee River Basin: Natural Resource Technical Report NPS/NRWRD/NRTR—2007/366, Fort Collins, CO: Natl. Park Service, 007.

  8. Das, S.P., Bej, D., Swain, S., Mishra, C.K., Sahoo, L., Jena, J.K., Jayasankar, P., and Das, P., Genetic divergence and structure of Cirrhinus mrigala populations from peninsular rivers of India, revealed by mitochondrial cytochrome b gene and truss morphometric analysis, Mitochondrial DNA, 2014, vol. 25, pp. 157–64. https://doi.org/10.3109/19401736.2013.792055

    Article  CAS  PubMed  Google Scholar 

  9. Dunteman, G.H., Principal Components Analysis, Quant. Appl. Soc. Sci. Ser. no. 07-069, Beverly Hills, CA: SAGE, 1989.

  10. Dwivedi, A.K., Morphometric variations between seasonal migrants of anadromous shad Tenualosa ilisha (Hamilton, 1822) from Hooghly estuary, India, Mar. Freshwater Res., 2019, vol. 70, pp. 1427–1435. https://doi.org/10.1071/MF19004

    Article  Google Scholar 

  11. Dwivedi, A.K., Sarkar, U.K., Mir, J.I., Tomat, P., and Vyas, V., The Ganges basin fish Cirrhinus mrigala (Cypriniformes: Cyprinidae): detection of wild populations stock structure with landmark morphometry, Rev. Biol. Trop., 2019a, vol. 67, pp. 541–553. https://doi.org/10.15517/RBT.V6712.34424

    Article  Google Scholar 

  12. Dwivedi, A.K., Sarkar, U.K., Mir, J.I., Tomat, P., and Vyas, V., Comparative pattern of reproductive potential of Indian major carp, Cirrhinus mrigala (Cypriniformes: Cyprinidae) in the Ganges basin, India, J. Inland Fish. Soc. India, 2019b, vol. 57, pp. 67–72.

    Google Scholar 

  13. Elliott, N.G., Haskard, K., and Koslow, J.A., Morphometric analysis of orange roughly (Hoplostethus atianticus) off the continental slope of Southern Australia, J. Fish Biol., 1995, vol. 46, pp. 202–220. https://doi.org/10.1111/j.1095-8649.1995.tb05962.x

    Article  Google Scholar 

  14. Esguicero, A.L.H. and Arcifa, S.A., Fragmentation of a neotropical migratory fish population by a century old dam, Hydrobiologia, 2010, vol. 638, pp. 41–53. https://doi.org/10.1007/s10750-009-0008-2

    Article  Google Scholar 

  15. FishBase, Version 03/2020, Froese, R. and Pauly, D., Eds., 2019. http://www.fishbase.org, Foster, K., Bower, L., and Piller, K., Getting in shape: habitat-based morphological divergence for two sympatric fishes, Biol. J. Linn. Soc., 2015, vol. 114, pp. 152–162. https://doi.org/10.1111/bij.12413

  16. Hammer, Ø., Harper D.A.T., and Ryan P.D., PAST: Paleontological statistics software package for education and data analysis, Palaeontol. Electron., 2001, vol. 4, p. 9.

    Google Scholar 

  17. Hendry, A.P., Taylor, E.B., and McPhail, J.D., Adaptive divergence and the balance between selection and gene flow: lake and stream stickleback in the Misty system, Evolution, 2002, vol. 56, pp. 1199–1216. https://doi.org/10.1111/j.0014-3820.2002.tb01432.x

    Article  PubMed  Google Scholar 

  18. Herczeg, G., Turtiainen, M., and Merilä, J., Morphological divergence of North-European nine-spined sticklebacks (Pungitius pungitius): signatures of parallel evolution, Biol. J. Linn. Soc., 2010, vol. 101, pp. 403–416. https://doi.org/10.1111/j.1095-8312.2010.01518.x

    Article  Google Scholar 

  19. Ihssen, P.E., Evans, D.O., Christie, W.J., Rechahn, J.A., and DesJardine, D.L., Life history, morphology, and electrophoretic characteristics of five allopatric stocks of lake whitefish (Coregonus clupeaformis) in the Great Lakes region, Can. J. Fish. Aquat. Sci., 1981, vol. 38, pp. 1790–1807. https://doi.org/10.1139/f81-226

    Article  Google Scholar 

  20. Jager, H.I., Chandler, J.A., Lepla, K.B., and Winkle, W.V., A theoretical study of river fragmentation by dams and its effect on white sturgeon populations, Environ. Biol. Fish., 2001, vol. 60, pp. 347–361. https://doi.org/10.1023/A:1011036127663

    Article  Google Scholar 

  21. Jearranaiprepame, P., Morphological differentiation among isolated populations of dwarf snakehead fish, Channa gachua (Hamilton, 1822) using truss network analysis, Acta Biol. (Szeged), 2017, vol. 61, pp. 119–128.

    Google Scholar 

  22. Johnson, D.H., How to measure habitat: a statistical perspective, in The Use of Multivariate Statistics in Studies on Wildlife Habitat: US Forest Service General Technical Report RM-87, Fort Collins, CO: US Dep. Agric., For. Serv., 1981, pp. 53–57.

  23. Khan, M.A. and Nazir, A., Stock delineation of the long-whiskered catfish, Sperata aor (Hamilton, 1822), from River Ganga by using morphometrics, Mar. Freshwater Res., 2019, vol. 70, pp. 107–113. https://doi.org/10.1071/MF17306

    Article  Google Scholar 

  24. Khan, M.A., Miyan, K., and Khan, S., Morphometric variation of snakehead fish, Channa punctatus, populations from three Indian rivers, J. Appl. Ichthyol., 2013, vol. 29, pp. 637–642. https://doi.org/10.1111/j.1439-0426.2012.02058.x

    Article  Google Scholar 

  25. Kocovsky, P.M., Adams, J.V., and Bronte, C.R., The effect of sample size on the stability of principal component analysis of truss-based fish morphometrics, Trans. Am. Fish. Soc., 2009, vol. 138, pp. 487–496. https://doi.org/10.1577/T08-091.1

    Article  Google Scholar 

  26. Mamuris, Z., Apostolidis, A.P., Panagiotaki, P., Theodorou, A.J., and Triantaphyllidis, C., Morphological variation between red mullet populations in Greece, J. Fish Biol., 1998, vol. 52, pp. 107–117. https://doi.org/10.1111/j.1095-8649.1998.tb01556.x

    Article  Google Scholar 

  27. Marcil, J., Swain, D.P., and Hutchings, J.A., Genetic and environmental components of phenotypic variation in body shape among populations of Atlantic cod (Gadus morhua L.), Biol. J. Linn. Soc., 2006, vol. 88, pp. 351–365. https://doi.org/10.1111/j.1095-8312.2006.00656.x

    Article  Google Scholar 

  28. McAllister, D.E., Craig, J.F., Davidson, N., Delany, S., and Seddon, M., Biodiversity Impacts of Large Dams: Background Paper No. 1, Gland: Int. Union Conserv. Nat. Nat. Resour., 2001, p. 66.

  29. Meldgaard, T., Nielsen, E.E., and Loeschcke, V., Fragmentation by weirs in a riverine system: a study of genetic variation in time and space among populations of European grayling (Thymallus thymallus) in a Danish river system, Conserv. Genet., 2003, vol. 4, pp. 735–747. https://doi.org/10.1023/B:COGE.0000006115.14106.de

    Article  CAS  Google Scholar 

  30. Mir, J.I., Sarkar, U.K., Dwivedi, A.K., Gusain, O.P., and Jena, J.K., Stock structure analysis of Labeo rohita (Hamilton, 1822) across the Ganga basin (India) using a truss network system, J. Appl. Ichthyol., 2013a, vol. 29, pp. 1097–1103. https://doi.org/10.1111/jai.12141

    Article  Google Scholar 

  31. Mir, F.A., Mir, J.I., Patiyal, R.S., and Chandra, S., Pattern of morphometric differentiation among three populations of snowtrout, Schizothorax plagiostomus (Actinopterygii: Cypriniformes: Cyprinidae), from Kashmir Himalaya using a truss network system, Acta Ichthyol. Piscatoria, 2013b, vol. 43, pp. 277–284. https://doi.org/10.3750/AIP2013.43.4.03

    Article  Google Scholar 

  32. Mohindra, V., Divya, B.K., Kumar, R., Singh, R.K., Dwivedi, A.K., Mandal, S., Masih, P., Lal, K.K., and Jena, J.K., Genetic population structure of a highly migratory hilsa shad, Tenualosa ilisha, in three river systems, inferred from four mitochondrial genes analysis, Environ. Biol. Fish., 2019, vol. 102, pp. 939–954. https://doi.org/10.1007/s10641-019-00881-8

    Article  Google Scholar 

  33. Nagel, L. and Schluter, D., Body size, natural selection, and speciation in sticklebacks, Evolution, 1998, vol. 52, p. 209. https://doi.org/10.2307/2410936

    Article  PubMed  Google Scholar 

  34. Nazir, A. and Khan, M.A., Stock discrimination of Sperata aor from River Ganga using microsatellite markers: implications for conservation and management, Aquat. Living Resour., 2017, vol. 30, pp. 33–31. https://doi.org/10.1051/alr/2017033

    Article  Google Scholar 

  35. Nazir, A. and Khan, M.A., Spatial and temporal variation in otolith chemistry and its relationship with water chemistry: stock discrimination of Sperata aor, Ecol. Freshwater Fish., 2019, vol. 28, pp. 499–511. https://doi.org/10.1111/eff.12471

    Article  Google Scholar 

  36. Ndiwa, T.C., Nyingi, D.W., Claude, J., and Agnése, J.F., Morphological variations of wild populations of Nile tilapia (Oreochromis niloticus) living in extreme environmental conditions in the Kenyan Rift-Valley, Environ. Biol. Fish., 2016, vol. 99, pp. 473–485. https://doi.org/10.1007/s10641-016-0492-y

    Article  Google Scholar 

  37. Nimalathasan, B., Determinants of key performance indicators (KPIs) of private sector banks in Srilanka: an application of exploratory factor analysis, Ann. Stefan cel Mare Univ. Suceava, 2009, vol. 9, pp. 9–17.

  38. Payne, A.I., Sinha, R., Singh, H.R., and Huq, S., A review of Ganges basin: its fish and fisheries, Proc. Second Int. Symp. on the Management of Large Rivers for Fisheries “Sustaining Livelihoods and Biodiversity in the New Millennium,” Welcomme, R. and Petr, T., Eds., Bangkok: FAO Reg. Off. Asia Pac., 2004, vol. 1, pp. 229–251.

  39. Pelicice, F.M. and Agostinho, A.A., Fish-passage facilities as ecological traps in large Neotropical rivers, Conserv. Biol., 2008, vol. 22, pp. 180–188. https://doi.org/10.1111/j.1523-1739.2007.00849.x

    Article  PubMed  Google Scholar 

  40. Pinheiro, A., Teixeira, C.M., Rego, A.L., Marques, J.F., and Cabral, H.N., Genetic and morphological variation of Solea lascaris (Risso, 1810) along the Portuguese coast, Fish. Res., 2005, vol. 73, pp. 67–78. https://doi.org/10.1016/j.fishres.2005.01.004

    Article  Google Scholar 

  41. Poulet, N., Evidence of morphological discrete units in an endemic fish, the rostrum dace (Leuciscus burdigalensis Valenciennes 1844), within a small river basin, Knowl. Manage. Aquat. Ecosyst., 2008, vol. 388, pp. 3–14. https://doi.org/10.1051/kmae:2008003

    Article  Google Scholar 

  42. Poulet, N., Berrebi, P., Crivelli, A.J., Lek, S., and Argillier, C., Genetic and morphometric variations in the pikeperch (Sander lucioperca L.) of a fragmented delta, Arch. Hydrobiol., 2004, vol. 159, pp. 531–554. https://doi.org/10.1127/0003-9136/2004/0159-0531

    Article  Google Scholar 

  43. Price, T.D., Qvarnstrom, A., and Irwin, D.E., The role of phenotypic plasticity in driving genetic evolution, Proc. R. Soc. B, 2003, vol. 270, pp. 1433–1440. https://doi.org/10.1098/rspb.2003.2372

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ramler, D., Mitteroecker, P., Shama, L.N.S., Wegner, K.M., and Ahnelt, H., Nonlinear effects of temperature on body form and developmental canalization in the threespine stickleback, J. Environ. Biol., 2014, vol. 27, pp. 497–507. https://doi.org/10.1111/jeb.12311

    Article  CAS  Google Scholar 

  45. Rao, R J., Biological resources of the Ganga River, Hydrobiologia, 2001, vol. 458, pp. 159–168. https://doi.org/10.1023/A:1013173204091

    Article  Google Scholar 

  46. Reddy, P.V.G.K., Genetic Resources of Indian Major Carps, FAO Fish. Tech. Pap. vol. 387, Rome: UN Food Agric. Org., 1999.

  47. Rincón, P.A., Bastir, M., and Grossman, G.D., Form and performance: body shape and prey-capture success in four drift-feeding minnows, Oecologia, 2007, vol. 152, pp. 345–355. https://doi.org/10.1007/s00442-006-0651-5

    Article  PubMed  Google Scholar 

  48. Rohlf, F.J., tpsDig2, Version 2.1, NY: State Univ. of New York, 2006. http://life.bio.sunysb.edu/morph.

  49. Saini, A., Dua, A., and Mohindra, V., Comparative morphometrics of two populations of giant river catfish (Mystus seenghala) from the Indus river system, Integr. Zool., 2008, vol. 3, pp. 219–226. https://doi.org/10.1111/j.1749-4877.2008.00099.x

    Article  PubMed  Google Scholar 

  50. Samaee, S.M., Mojazi-Amiri, B., and Hosseini-Mazinani, S.M., Comparison of Capoeta capoeta gracilis (Cyprinidae, Teleostei) populations in the south Caspian Sea River basin, using morphometric ratios and genetic markers, Folia Zool., 2006, vol. 55, pp. 323–335.

    Google Scholar 

  51. Samaee, M., Patzner, R.A., and Mansour, N., Morphological differentiation within the population of Siah mahi, Capoeta capoeta gracilis, (Cyprinidae, Teleostei) in a river of the south Caspian Sea basin: a pilot study, J. Appl. Ichthyol., 2009, vol. 25, pp. 583–590. https://doi.org/10.1111/j.1439-0426.2009.01256.x

    Article  Google Scholar 

  52. Sarkar, U.K., Pathak, A.K., Sinha, R.K., Sivakumar, K., Pandian, A.K., Pandey, A., Dubey, V.K., and Lakra, W.S., Freshwater fish biodiversity in the River Ganga (India): changing pattern, threats and conservation perspectives, Rev. Fish Biol. Fish., 2012, vol. 22, pp. 251–272. https://doi.org/10.1007/s11160-011-9218-6

    Article  Google Scholar 

  53. Scheiner, S.M., Genetics and evolution of plasticity, Ann. Rev. Ecol. Syst., 1993, vol. 24, pp. 35–68. https://doi.org/10.1146/annurev.es.24.110193.000343

    Article  Google Scholar 

  54. Shukla, R. and Bhat, A.,Morphological divergences and ecological correlates among wild populations of zebrafish (Danio rerio), Environ. Biol. Fish., 2017, vol. 100, pp. 251–264. https://doi.org/10.1007/s10641-017-0576-3

    Article  Google Scholar 

  55. Stearns, S.C, The evolutionary significance of phenotypic plasticity: phenotypic sources of variation among organisms can be described by developmental switches and reaction norms, BioScience, 1989, vol. 39, pp. 436–445. https://doi.org/10.2307/1311135

    Article  Google Scholar 

  56. Strauss, R.E., Evolutionary allometry and variation in the body form in the South American catfish genus Corydoras (Callichthydae), Syst. Zool., 1985, vol. 34, pp. 381–396.

    Article  Google Scholar 

  57. Strauss, R.E. and Bookstein, F.L., The truss: body form reconstruction in morphometrics, Syst. Zool., 1982, vol. 31, pp. 113–135. https://doi.org/10.2307/2413032

    Article  Google Scholar 

  58. Swain, D.P. and Foote, C.J., Stocks and chameleons: the use of phenotypic variation in stock identification, Fish. Res., 1999, vol. 43, pp. 113–128. https://doi.org/10.1016/S0165-7836(99)00069-7

    Article  Google Scholar 

  59. Turan, C., Yalcin, S., Turan, F., Okur, E., and Akyurt, I., Morphometric comparisons of African catfish, Clarias gariepinus, populations in Turkey, Folia Zool., 2005, vol. 54, pp. 165–172.

    Google Scholar 

  60. Turek, E., Harrison, I., Dudgeon, D., Abell, R., Bush, A., Darwall, W., Finlayson, C.M., Ferrier, S., Freyhof, J., Hermoso, V., Juffe-Bignoli, D., Linke, S., Nel, J., Patricio, H.C., Pittock, J., et al., Essential biodiversity variables for measuring change in global freshwater biodiversity, Biol. Conserv., 2016, vol. 213, pp. 272–279. https://doi.org/10.1016/j.biocon.2016.09.005

    Article  Google Scholar 

  61. Veasey, E.A., Schammass, E.A., Vencovsky, R., Martins, P.S., and Bandel, G., Germplasm characterization of Sesbania accessions based on multivariate analyses, Genet. Resour. Crop Evol., 2001, vol. 48, pp. 79–90. https://doi.org/10.1023/A:1011238320630

    Article  Google Scholar 

  62. West-Eberhard, M.J., Phenotypic plasticity and the origins of diversity, Annu. Rev. Ecol. Syst., 1989, vol. 20, pp. 249–278. https://doi.org/10.1146/annurev.es.20.110189.001341

    Article  Google Scholar 

  63. Yamamoto, S., Maekawa, K., Tamate, T., Koizumi, I., Hasegawa, K., and Kubota, H., Genetic evaluation of translocation in artificially isolated populations of white-spotted charr (Salvelinus leucomaenis), Fish. Res., 2006, vol. 78, pp. 352–358. https://doi.org/10.1016/j.fishres.2005.11.011

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by fishermen group (Mr. Kamal and Mr. Jatin) who cooperated in fish sample collection. This research did not receive any specific funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Dwivedi.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dwivedi, A.K. Implications of Physical Barriers on Longitudinal Connectivity in the Ganga River System through Morphological Assessment of Cirrhinus mrigala (Cyprinidae) Populations. J. Ichthyol. 61, 270–279 (2021). https://doi.org/10.1134/S0032945221020053

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0032945221020053

Keywords:

Navigation