Skip to main content
Log in

Influence of All-Round Forging under Short-Term Creep Conditions on the Structure and Mechanical Properties of the Al7075/10SiCp Composite with an Aluminum Matrix

  • STRENGTH AND PLASTICITY
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The effect of the preliminary deformation and heat treatment by all-round forging under conditions of short-term high-temperature creep on the microstructure and mechanical properties of a composite material based on a high-strength aluminum alloy of the Al–Cu–Mg–Zn system (Al7075) strengthened with SiC particles (10 wt %) is investigated. The most effective regime of short-term high-temperature creep is established experimentally. It is found that an avalanche-like increase in the rate of relative deformation occurs upon heating to temperatures above 500°C. This increase is due to the local appearance of a liquid phase at the boundaries between the needle-like particles of the S-phase and an Al based solid solution in the composite matrix in accordance with the eutectic transformation α-Al + S(Al2CuMg) → L. After deformation and heat treatment, reinforcing SiC particles are redistributed and the structure of the composite is transformed from a cellular to a uniform configuration. At the same time, the micromechanical properties are leveled over the volume of the composite. The maximum value of the resistance to deformation in the axial compression test increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. E. N. Kablov, B. V. Shchetanov, D. V. Grashchenkov, A. A. Shavnev, and A. N. Nyafkin, “Metal-matrix composite materials based on Al–SiC,” AMIT, No. S, 373–380 (2012).

  2. A. A. Shavnev, V. V. Berezovskii, and Yu. A. Kurganova, “Features of the use of a structural metal composite material based on an aluminum alloy reinforced with SiC particles. Part 1 (review),” Novosti Materialovedeniya. Nauka i Tekhnika, No. 3, 3–10 (2015).

    Google Scholar 

  3. A. A. Shavnev, V. V. Berezovskii, and Yu. A. Kurganova, “Features of the use of a structural metal composite material based on an aluminum alloy reinforced with SiC particles. Part 2 (review),” Novosti Materialovedeniya. Nauka i Tekhnika, No. 3, 11–17 (2015).

    Google Scholar 

  4. E. A. Stoyakina, E. I. Kurbatkina, V. N. Simonov, D. V. Kosolapov, and A. V. Gololobov, “Mechanical properties of aluminum-matrix composites reinforced with SiC particles, depending on the matrix alloy (review),” Trudy VIAM, No. 2, 62–73 (2018).

    Google Scholar 

  5. D. B. Miracle, “Metal matrix composites – From science to technological significance,” Compos. Sci. Technol. 65, No. 15–16, 2526–2540 (2005). https://doi.org/10.1016/j.compscitech.2005.05.027

    Article  CAS  Google Scholar 

  6. V. V. Vani and S. K. Chak, “The effect of process parameters in aluminum metal matrix composites with powder metallurgy,” Manuf. Rev. 5, 7 (2018).

    Google Scholar 

  7. E. I. Kurbatkina, A. A. Shavnev, D. V. Kosolapov, and A. V. Gololobov, “Features of heat treatment of composite materials with an aluminum matrix (review),” Trudy VIAM, No. 11, 82–97 (2017).

    Google Scholar 

  8. E. I. Kurbatkina, D. V. Kosolapov, A. V. Gololobov, and A. A. Shavnev, “Study of the structure and properties of a metallic composite material of the Al–Zn–Mg Cu/SiC system,” Tsvetn. Met., No. 1, 40–45 (2019).

  9. J. Čadek, K. Kuchařová, and S. J. Zhu, “High temperature creep behaviour of an Al–8.5Fe–1.3V–1.7Si alloy reinforced with silicon carbide particulates,” Mater. Sci. Eng., A 283, No. 1–2, 172–180 (2000).

    Article  Google Scholar 

  10. J. Čadek, K. Kuchařová, and S. J. Zhu, “Transition from athermal to thermally activated detachment of dislocations from small incoherent particles in creep of an Al–8.5Fe–1.3V–1.7Si alloy reinforced with silicon carbide particulates,” Mater. Sci. Eng., A 297, Nos. 1–2, 176–184 (2000).

    Article  Google Scholar 

  11. Z. Y. Ma and S. C. Tjong, “High-temperature creep behaviour of SiC particulate reinforced Al–Fe–V–Si alloy composite,” Mater. Sci. Eng., A 278, Nos. 1–2, 5–15 (2000).

    Article  Google Scholar 

  12. M. S. Kishchik, A. D. Kotov, A. A. Kishchik, A. V. Mikhailovskaya, D. O. Demin, and S. A. Aksenov, “The effect of multidirectional forging on the deformation and microstructure of the Al–Mg alloy,” Phys. Met. Metallogr. 121, No. 6, 597–603 (2020).

    Article  CAS  Google Scholar 

  13. A. A. Kishchik, M. S. Kishchik, A. D. Kotov, and A. V. Mikhailovskaya, “Effect of multidirectional forging on the microstructure and mechanical properties of the Al–Mg–Mn–Cr alloy,” Phys. Met. Metallogr. 121, No. 5, 489–494 (2020).

    Article  CAS  Google Scholar 

  14. D. Božić, M. Vilotijević, V. Rajković, and Ž. Gnjidić, “Mechanical and fracture behaviour of a SiC-particle-reinforced aluminum alloy at high temperature,” Mater. Sci. Forum 494, 487–492 (2005).

    Article  Google Scholar 

  15. M. Y. Wu and O. D. Sherby, “Superplasticity in a silicon carbide whisker reinforced aluminum alloy,” Scr. Metall. 18, No. 8, 773–776 (1984).

    Article  CAS  Google Scholar 

  16. G. González-Doncel and O. D. Sherby, “Tensile ductility and fracture of superplastic Aluminum–SiC composites under thermal cycling conditions,” Metall. Mater. Trans. A 27, No. 9, 2837–2842 (1996).

    Article  Google Scholar 

  17. A. Yu. Larichkin, K. V. Zakharchenko, B. V. Gorev, and V. I. Kapustin, “Experimental modeling of technological process of pure aluminum alloy (Al–Zn–Mg–Cu) structural elements forming under creep,” Obrabotka Metallov (Tekhnologiya, Oborudovanie, Instrumenty), No. 1, 6–15 (2016).

  18. H. Luo, W. Li, C. Li, and M. Wan, “Investigation of creep-age forming of aluminum lithium alloy stiffened panel with complex structures and variable curvature,” Int. J. Adv. Manuf. Technol. 91, Nos. 9–12, 3265–3271 (2017).

    Article  Google Scholar 

  19. J. R. Pickens, T. J. Langan, R. O. England, and M. Liebson, “A study of the hot-working behavior of SiC−Al alloy composites and their matrix alloys by hot torsion testing,” Metall. Mater. Trans. A 18, No. 2, 303–312 (1987).

    Article  Google Scholar 

  20. A. Razaghian, D. Yu, and T. Chandra, “Fracture behaviour of a SiC-particle-reinforced aluminium alloy at high temperature,” Compos. Sci. Technol. 58, No. 2, 293–298 (1998).

    Article  CAS  Google Scholar 

  21. Q. M. Azpen, B. T. H. T. Baharudin, S. Shamsuddin, and F. Mustapha, “Reinforcement and hot workability of aluminium alloy 7075 particulate composites: A review,” J. Eng. Sci. Technol. 13, No. 4, 1034–1057 (2018).

    Google Scholar 

  22. D. I. Kryuchkov and A. V. Nesterenko, “A review of experimental studies of creep behavior and superplasticity in a discontinuous sic aluminum-matrix composites,” Obrabotka Metallov (Tekhnologiya, Oborudovanie, Instrumenty) 22, No. 2, 130–157 (2020).

  23. S. V. Smirnov, D. I. Kryuchkov, A. V. Nesterenko, I. M. Berezin, D. I. Vichuzhanin, “Experimental study of short-term unsteady creep of an aluminum-matrix composite under uniaxial compression,” VPNIPU. Mekhanika, No. 4, 98–105 (2018).

    Google Scholar 

  24. N. B. Pugacheva, N. S. Michurov, E. I. Senaeva, and T. M. Bykova, “Structure and thermophysical properties of aluminum-matrix composites,” Phys. Met. Metallogr. 117, No. 11, 1144–1151 (2016).

    Article  CAS  Google Scholar 

  25. N. B. Pugacheva, N. S. Michurov, and T. M. Bykova, “Structure and properties of the Al/SiC composite material,” Phys. Met. Metallogr. 117, No. 6, 634–640 (2016).

    Article  CAS  Google Scholar 

  26. N. B. Pugacheva, I. Yu. Malygina, N. S. Michurov, E. I. Senaeva, and N. P. Antenorova, “Effect of heat treatment on the structure and phase composition of aluminum matrix composites containing silicon carbide,” Diag., Resour. Mech. Mater. Struct., No. 6, 28–36 (2017).

  27. B. N. Arzamasov and T. V. Solov’ev, Handbook on Structural Materials (MSTU after N. E. Bauman, Moscow, 2005) [in Russian].

Download references

ACKNOWLEDGMENTS

We are grateful to A.S. Smirnov, Cand. Sci. (Tech.), for carrying out the experiments.

Funding

This study was supported by Program of Fundamental Research of State Academies of Sciences, topic no. AAAA-A18-118020790145-0. The equipment of Center for Collective Use Plastometriya at the Institute of Mechanical Engineering, Ural Branch, Russian Academy of Sciences, was used when performing the tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. I. Kryuchkov.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kryuchkov, D.I., Nesterenko, A.V., Smirnov, S.V. et al. Influence of All-Round Forging under Short-Term Creep Conditions on the Structure and Mechanical Properties of the Al7075/10SiCp Composite with an Aluminum Matrix. Phys. Metals Metallogr. 122, 981–990 (2021). https://doi.org/10.1134/S0031918X21100069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X21100069

Keywords:

Navigation