Skip to main content
Log in

Micromagnetic Analysis of Temperature Dependences of Hysteresis Properties of Polycrystalline Films with Exchange Bias

  • ELECTRICAL AND MAGNETIC PROPERTIES
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

A phenomenological model of the formation of exchange bias field and coercivity of polycrystalline ferromagnet/antiferromagnet composites is constructed by an example of the Fe19Ni81/Fe50Mn50 system. Based on the experimental data on temperature variations of the hysteresis properties, the estimation of distributions of crystallite blocking temperature and crystallite magnetic anisotropy constant for the antiferromagnetic layer is performed. The obtained results are used in order to perform the micromagnetic simulation of the temperature dependences of the coercivity and exchange bias field of ferromagnetic layer. It is shown that the micromagnetic model can be used successfully for the analysis and prediction of hysteresis properties of film with the exchange bias.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. W. H. Meiklejohn and C. P. Bean, “New magnetic anisotropy,” Phys. Rev. 102, 904–913 (1956).

    Article  Google Scholar 

  2. S. Peng, D. Zhu, W. Li, H. Wu, A. J. Grutter, D. A. Gilbert, J. Lu, D. Xiong, W. Cai, P. Shafer, K. L. Wang, and W. Zhao, “Exchange bias switching in an antiferromagnet/ferromagnet bilayer driven by spin–orbit torque,” Nat. Electron. 3, 757–764 (2020).

    Article  CAS  Google Scholar 

  3. V. Baltz, A. Manchon, M. Tsoi, T. Moriyama, T. Ono, and Y. Tserkovnyak, “Antiferromagnetic spintronics,” Rev. Mod. Phys. 90, 15005 (2018).

    Article  CAS  Google Scholar 

  4. J. Camarero, J. Sort, A. Hoffmann, M. J. García-Martín, B. Dieny, R. Miranda, and J. Nogués, “Origin of the asymmetric magnetization reversal behavior in exchange-biased systems: Competing anisotropies,” Phys. Rev. Lett. 95, 1–4 (2005).

    Article  Google Scholar 

  5. T. Blachowicz and A. Ehrmann, “Exchange bias in thin films–an update,” Coatings 11, 1–21 (2021).

    Article  Google Scholar 

  6. J. Nogués, D. Lederman, T. J. Moran, I. K. Schuller, and K. V. Rao, “Large exchange bias and its connection to interface structure in FeF 2-Fe bilayers,” Appl. Phys. Lett. 68, 3186 (1995).

    Article  Google Scholar 

  7. D. Mauri, H. C. Siegmann, P. S. Bagus, and E. Kay, “Simple model for thin ferromagnetic films exchange coupled to an antiferromagnetic substrate,” J. Appl. Phys. 62, 3047–3049 (1987).

    Article  Google Scholar 

  8. I. K. Schuller, R. Morales, X. Batlle, U. Nowak, and G. Güntherodt, “Role of the antiferromagnetic bulk spins in exchange bias,” J. Magn. Magn. Mater. 416, 2–9 (2016).

    Article  CAS  Google Scholar 

  9. A. P. Malozemoff, “Random-field model of exchange anisotropy at rough ferromagnetic- antiferromagnetic interfaces,” Phys. Rev. B 35, 3679–3682 (1987).

    Article  CAS  Google Scholar 

  10. R. L. Stamps, “Mechanisms for exchange bias,” J. Phys. D: Appl. Phys. 33, R247 (2001).

    Article  Google Scholar 

  11. E. Fulcomer and S. H. Charap, “Thermal fluctuation aftereffect model for some systems with ferromagnetic-antiferromagnetic coupling,” J. Appl. Phys. 43, 4190–4199 (1972).

    Article  Google Scholar 

  12. S. Polisetty, S. Sahoo, and C. Binek, “Scaling behavior of the exchange-bias training effect,” Phys. Rev. B: Condens. Matter Mater. Phys. 76, 1–9 (2007).

    Article  Google Scholar 

  13. K. Nishioka, C. Hou, H. Fujiwara, and R. D. Metzger, “Grain size effect on ferro-antiferromagnetic coupling of NiFe/FeMn systems,” J. Appl. Phys. 80, 4528–4533 (1996).

    Article  CAS  Google Scholar 

  14. M. D. Stiles and R. D. McMichael, “Coercivity in exchange-bias bilayers,” Phys. Rev. B: Condens. Matter Mater. Phys. 63, 1–10 (2001).

    Article  Google Scholar 

  15. K. O’Grady, L. E. Fernandez-Outon, and G. Vallejo-Fernandez, “A new paradigm for exchange bias in polycrystalline thin films,” J. Magn. Magn. Mater. 322, 883–899 (2009).

    Article  Google Scholar 

  16. J. Saha and R. H. Victora, “Large scale micromagnetic simulation for the exchange interaction between a polycrystalline antiferromagnet and a ferromagnet,” Phys. Rev. B: Condens. Matter Mater. Phys. 73, 1–9 (2006).

    Article  Google Scholar 

  17. R. F. L. Evans, W. J. Fan, P. Chureemart, T. A. Ostler, M. O. A. Ellis, and R. W. Chantrell, “Atomistic spin model simulations of magnetic nanomaterials,” J. Phys.: Condens. Matter. 26, 103202 (2014).

    CAS  Google Scholar 

  18. B. Craig, R. Lamberton, A. Johnston, U. Nowak, R. W. Chantrell, and K. O’Grady, “A model of the temperature dependence of exchange bias in coupled ferromagneticantiferromagnetic bilayers,” J. Appl. Phys. 103, 7–10 (2008).

    Article  Google Scholar 

  19. V. O. Vas’kovskiy, O. A. Adanakova, A. N. Gorkovenko, V. N. Lepalovskij, A. V. Svalov, and E. A. Stepanova, “Exchange bias in FeMn/M (M = FeNi, Gd, Tb) films,” Phys. Procedia 82, 56–62 (2016).

    Article  Google Scholar 

  20. S. Nayak, P. K. Manna, T. Vijayabaskaran, B. B. Singh, J. A. Chelvane, and S. Bedanta, “Exchange bias in Fe/Ir20Mn80 bilayers: Role of spin-glass like interface and ‘bulk’ antiferromagnet spins,” J. Magn. Magn. Mater. 499, 166267 (2020).

    Article  CAS  Google Scholar 

  21. L. E. Fernández-Outón, K. O’Grady, and M. J. Carey, “Thermal phenomena in IrMn exchange biased systems,” J. Appl. Phys. 95, 6852–6854 (2004).

    Article  Google Scholar 

  22. G. Vallejo-Fernandez, N. P. Aley, J. N. Chapman, and K. O' Grady, “Measurement of the attempt frequency in antiferromagnets,” Appl. Phys. Lett. 97, 1–4 (2010).

    Article  Google Scholar 

  23. V. O. Vas’kovskiy, V. N. Lepalovskij, A. N. Gor’kovenko, N. A. Kulesh, P. A. Savin, A. V. Svalov, E. A. Stepanova, A. A. Yuvchenko, and N. N. Shchegoleva, “Fe20Ni80/Fe50Mn50 film magnetoresistive medium,” Tech. Phys. 60, 116–122 (2015).

    Article  Google Scholar 

  24. L. E. Fernandez-Outon, G. Vallejo-Fernandez, S. Manzoor, B. Hillebrands, and K. O’Grady, “Interfacial spin order in exchange biased systems,” J. Appl. Phys. 104, 093907 (2008).

    Article  Google Scholar 

  25. A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F. Garcia-Sanchez, and B. Van Waeyenberge, “The design and verification of MuMax3,” AIP Adv. 4, 107133 (2014).

    Article  Google Scholar 

  26. J. De Clercq, A. Vansteenkiste, M. Abes, K. Temst, and B. Van Waeyenberge, “Modelling exchange bias with MuMax3,” J. Phys. D: Appl. Phys. 49, 1–7 (2016).

    Article  CAS  Google Scholar 

  27. W. Brown, “Thermal fluctuations of a single-domain particle,” Phys. Rev. 130, 1677–1686 (1963).

    Article  Google Scholar 

  28. W. Daeng-Am, P. Chureemart, A. Rittidech, L. J. Atkinson, R. W. Chantrell, and J. Chureemart, “Micromagnetic model of exchange bias: Effects of structure and AF easy axis dispersion for IrMn/CoFe bilayers,” J. Phys. D: Appl. Phys. 53, 045002 (2020).

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by the Russian Science Foundation, project no. 19-72-00141.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Kulesh.

Additional information

Translated by N. Kolchugina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulesh, N.A., Moskalev, M.E., Vas’kovskii, V.O. et al. Micromagnetic Analysis of Temperature Dependences of Hysteresis Properties of Polycrystalline Films with Exchange Bias. Phys. Metals Metallogr. 122, 855–860 (2021). https://doi.org/10.1134/S0031918X21090064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X21090064

Keywords:

Navigation