Skip to main content
Log in

Experimental and DFT studies on the vibrational and electronic spectra of 2-(4,5-phenyl-1H-imidazole-2-yl)-phenol

  • Spectroscopy of Atoms and Molecules
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The compound 2-(4,5-phenyl-1H-imidazole-2-yl-phenol (PIP) was synthesized, followed by structure determination by X-ray diffraction, the results of which agree well with the calculated optimized, lowest energy geometrical structure. Vibrational information was obtained by FT-IR and Raman spectroscopy which also agree well with calculations (of harmonic vibration frequencies). The calculations were carried out with density functional theory B3LYP methods using 6-311++G** and LANL2DZ basis sets. Absorption UV-Vis experiments of PIP in CH3CH2OH solution reveal three maximum peaks at 245, 292 and 317 nm, which are in agreement with calculated electronic transitions using TD-B3LYP/6-311++G** in CH3CH2OH solution, and agree to the gas-phase calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Chelucci and R. Thummel, Chem. Rev. 102, 3129 (2002).

    Article  Google Scholar 

  2. S. D. Sharma and P. Hazarika, Tetrahedron Lett. 49, 2216 (2008).

    Article  Google Scholar 

  3. M. Kaftory, H. Taycher, and M. Botoshansky, J. Chem. Soc. Perkin Trans. 2, 407 (1998).

    Article  Google Scholar 

  4. J. Jayabharathi, V. Thanikachalam, N. Srinivasan, M. V. Perumal, and K. Jayainoorthy, Spectrochim. Acta A 79, 137 (2011).

    Article  ADS  Google Scholar 

  5. O. E. Abiodun, W. Li, R. Gao, M. Zhang, X. Hao, T. L. Liang, O. O. E. Nelson, and W.H. Sun. Inorg. Chem. 48, 9133 (2009).

    Article  Google Scholar 

  6. R. O. Bonello, I. R. Morgan, B. R. Yeo, L. E. J. Jones, B. M. Kariuki, I. A. Fallis, and S. J. A Pope, J. Organomet. Chem. 749, 150 (2014).

    Article  Google Scholar 

  7. C. L. Chen, D. M. Chang, T. C. Chen, C. C. Lee, H. H. Hsieh, F. C. Huang, K. F. Huang, J. H. Guh, J. J. Lin, and H. S. Huang, Eur. J. Med. Chem. 60, 29 (2013).

    Article  Google Scholar 

  8. R. Wang, H. F. Shi, J. F. Zhao, Y. P. He, H. B. Zhang, and J. P. Liu, Bioorg. Med. Chem. Lett. 23, 1760 (2013).

    Article  Google Scholar 

  9. T. T. Hou, J. Y. Bian, X. R. Yue, S. M. Yue, and J. F. Ma, Inorg. Chim. Acta 394, 15 (2013).

    Article  Google Scholar 

  10. Z. Q. Bian, K. Z. Wang, and L. P. Jin, Polyhedro 21, 313 (2002).

    Article  Google Scholar 

  11. Q. L. Zhang, J. G. Liu, J. Liu, G. Q. Xue, H. Li, J. Z. Liu, H. Zhou, L. H. Qu, and N. Ji, J. Inorg. Biochem. 85, 291 (2001).

    Article  Google Scholar 

  12. L. Wang, L. Ni, and J. Yao, Solid State Sci. 14, 1361 (2012).

    Article  ADS  Google Scholar 

  13. N. M. Shavaleev, H. Adams, and J. A. Weinstein, Inorg. Chem. Acta 360, 700 (2007).

    Article  Google Scholar 

  14. X. L. Wang, Y. Q. Chen, G. C. Liu, J. X. Zhang, H. Y. Lin, and B. K. Chen, Inorg. Chem. Acta 363, 773 (2010).

    Article  Google Scholar 

  15. R. Wang, H. F. Shi, J. F. Zhao, Y. P. He, H. B. Zhang, and J. P. Liu, Bioorg. Med. Chem. Lett., 1760 (2013).

    Google Scholar 

  16. T. C. Chen, D. S. Yu, K. F. Huang, Y. C. Fu, C. C. Lee, C. L. Chen, F. C. Huang, H. H. Hsieh, J. J. Lin, and H.S. Huang, Eur. J. Med. Chem. 69, 278 (2013).

    Article  Google Scholar 

  17. C. L. Chen, D. M. Chang, T. C. Chen, C. C. Lee, H. H. Hsieh, F. C. Huang, K. F. Huang, J. H. Guh, J. J. Lin, and H. S. Huang, Eur. J. Med. Chem. 60, 29 (2013).

    Article  Google Scholar 

  18. D. D. Sun, W. Z. Wang, J. W. Mao, W. J. Mei, and J. Liu, Bioorg. Med. Chem. Lett. 22, 102 (2012).

    Article  Google Scholar 

  19. I. M. Khan, A. Ahmad, and M. Aatif, J. Photochem. Photobiol. B 105, 6 (2011).

    Article  Google Scholar 

  20. R. J. Xavier and P. Dinesh, Spectrochim. Acta A 118, 999 (2014).

    Article  ADS  Google Scholar 

  21. L. L. Zhou, C. Y. Jia, Z. Q. Wan, X. M. Chen, and X. J. Yao, Organic Electronics 14, 1755 (2013).

    Article  Google Scholar 

  22. L. L. Li, X. Zhang, W. J. Zhang, W. Li, W. H. Sun, and C. Redshaw, Spectrochim. Acta A 118, 1047 (2014).

    Article  ADS  Google Scholar 

  23. Bruker, SMART (ver. 5.625) and SAINT-plus (ver. 6.22), Bruker AXS Inc., Madison, WI, 2000.

    Google Scholar 

  24. Bruker, SADABS (ver. 2.03), Bruker AXS Inc., Madison, WI, 1999.

  25. Bruker, SHELXTL (ver. 6.10), Bruker AXS Inc., Madison, WI, 2000.

    Google Scholar 

  26. HyperChem Pro. Release 6.03, Hypercube Inc., USA, 2000.

  27. A. D. Becke, Phys. Rev. A 38, 3098 (1988).

    Article  ADS  Google Scholar 

  28. C. Lee, W. Yang, and R. G. Pair, Phys. Rev. B 37, 785 (1988).

    Article  ADS  Google Scholar 

  29. N. U. Zhanpeisov and H. Fukumura, J. Phys. Chem. C 111, 16941 (2007).

    Article  Google Scholar 

  30. A. Nicklass, M. Dolg, H. Stoll, and H. Preuss, J. Chem. Phys. 102, 8942 (1995).

    Article  ADS  Google Scholar 

  31. C. Jarmorski, M. E. Casida, and D. R. Salahub, J. Chem. Phys. 104, 5134 (1996).

    Article  ADS  Google Scholar 

  32. R. Cammi and J. Tomasi, J. Comput. Chem. 16, 1449 (1995).

    Article  Google Scholar 

  33. M. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Darnels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian 03, Revision C.02, Gaussian Inc., Wallingford, CT, 2004.

    Google Scholar 

  34. T. T. Tang, G. D. Tang, S. S. Kou, J. Y. Zhao, L. F. Culnane, and Y. Zhang, Spectrochim. Acta A 117, 1054 (2003).

    Google Scholar 

  35. H. W. Lin and X. Zhu, Chin. J. Chem. 21, 1054 (2003).

    Google Scholar 

  36. Z. L. Xu, Y. He, S. Ma, and X. Y. Wang, Transition Met. Chem. 36, 585 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guodong Tang.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, Y., Tang, G., Tang, T. et al. Experimental and DFT studies on the vibrational and electronic spectra of 2-(4,5-phenyl-1H-imidazole-2-yl)-phenol. Opt. Spectrosc. 118, 202–213 (2015). https://doi.org/10.1134/S0030400X15020228

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X15020228

Keywords

Navigation