Skip to main content
Log in

Mathematical Modeling of HIV Replication and the Response of the Interferon System

  • MOLECULAR BIOLOGY OF THE CELL
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract—Developing physiologically meaningful mathematical models that describe multilevel regulation in a complex network of immune processes, in particular, of the system of interferon-regulated virus production processes, is a fundamental scientific problem, within the framework of an interdisciplinary systems approach to research in immunology. Here, we have presented a detailed high-dimensional model describing HIV (human immunodeficiency virus) replication, the response of type I interferon (IFN) to the virus infection of the cell, and suppression of the action of IFN-induced proteins by HIV accessory proteins. As a result, this model includes interactions of all three processes for the first time. The mathematical model is a system of 37 nonlinear ordinary differential equations including 78 parameters. Importantly, the model describes not only the processes of the IFN response of the cell to virus infection, but also the mechanisms used by the virus to prevent effects of the IFN system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Zinkernagel R.M., Hengartner H. 2004. On immunity against infections and vaccines: credo 2004. Scand J. Immunol. 60 (1‒2), 9‒13. Erratum in: Scand J. Immunol. 60 (3), 327.https://doi.org/10.1111/j.0300-9475.2004.01460.x

    Article  CAS  PubMed  Google Scholar 

  2. Hardy G., Sieg S., Rodriguez B., Anthony D., Asaad R., Jiang W., Mudd J., Schacker T., Funderburg N., Pilch–Cooper H., Debernardo R., Rabin R., Lederman M., Harding C. 2013. Interferon-α is the primary plasma type-I IFN in HIV-1 infection and correlates with immune activation and disease markers. PLoS One. 8, e56527. https://doi.org/10.1371/journal.pone.0056527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sandler N.G., Bosinger S.E., Estes J.D., Zhu R., Tharp G.K., Boritz E., Levin D., Wijeyesinghe S., Makamdop K., del Prete G., Hill B., Timmer J.K., Reiss E., Yarden G., Darko S., Contijoch E., Todd J.P., Silvestri G., Nason M., Norgren R., Jr., Keele B., Rao S., Langer J., Lifson J., Schreiber G., Douek D. 2014. Type I interferon responses in rhesus macaques prevent SIV infection and slow disease progression. Nature. 511, 601–605. https://doi.org/10.1038/nature13554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Doyle T., Goujon C., Malim M.H. 2015. HIV and interferons: who’s interfering with whom? Nat. Rev. 13, 403–413. https://doi.org/10.1038/nrmicro3449

    Article  CAS  Google Scholar 

  5. Browne E.P., Letham B., Rudin C. 2016. A computational model of inhibition of HIV-1 by interferon-alpha. PLoS One. 11 (3), e0152316. https://doi.org/10.1371/journal.pone.0152316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lavigne G.M., Russell H., Sherry B., Ke R. 2021. Autocrine and paracrine interferon signalling as ‘ring vaccination’ and ‘contact tracing’ strategies to suppress virus infection in a host. Proc. R. Soc. B. 288 (1945), 20203002. https://doi.org/10.1098/rspb.2020.3002

    Article  CAS  Google Scholar 

  7. Iwasaki A. 2012. A virological view of innate immune recognition. Annu. Rev. Microbiol. 66, 177–196. https://doi.org/10.1146/annurev-micro-092611-150203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shcherbatova O., Grebennikov D., Sazonov I., Meyerhans A., Bocharov G. 2020. Modeling of the HIV-1 life cycle in productively infected cells to predict novel therapeutic targets. Pathogens. 9 (4), 255. https://doi.org/10.3390/pathogens9040255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chereshnev V.A., Bazhan S.I., Bakhmet’ev B.A., Gainova I.A., Bocharov G.A. 2012. Systemic analysis of the pathogenesis of HIV infection. Usp. Sovrem. Biol. 132 (2), 115–140.

    Google Scholar 

  10. Chereshnev V.A., Bocharov G., Bazhan S., Bachmetyev B., Gainova I., Likhoshvai V., Argilaguet J.M., Martinez J.P., Rump J.A., Mothe B., Brander C., Meyerhans A. 2013. Pathogenesis and treatment of HIV infection: the cellular, the immune system and the neuroendocrine systems perspective. Int. Rev. Immunol. 32 (3), 282–306. https://doi.org/10.3109/08830185.2013.779375

    Article  CAS  PubMed  Google Scholar 

  11. Li G., Clercq E.De. 2016. HIV genome-wide protein associations: a review of 30 years of research. ASM J. Microbiol. Mol. Biol. Rev. 80 (3), 679‒731. https://doi.org/10.1128/MMBR.00065-15

  12. Chereshnev V.A., Bocharov G.A., Kim A.V., Bazhan S.I., Gainova I.A., Krasovskii A.N., Shmagel’ N.G., Ivanov A.V., Safronov M.A., Tret’yakova R.M. 2016. Vvedenie v zadachi modelirovaniya i upravleniya dinamikoi VICh-infektsii. (Introduction to the Problems of Modeling and Management of HIV Infection Dynamics). Moscow: Institut komp’yuternykh issledovanii.

  13. Neil S., Bieniasz P. 2009. Human immunodeficiency virus, restriction factors, and interferon. J. Interferon Cytokine Res. 29 (9), 569–580. https://doi.org/10.1089/jir.2009.0077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rinas M. 2016. Data-driven modeling of the dynamic competition between virus infection and the antiviral interferon response. Dissertation for the Degree of Doctor of Natural Sciences. Heidelberg, Germany: Combined Faculty for the Natural Sciences and Mathematics of the University of Heidelberg. http://archiv.ub.uni-he-idelberg.de/volltextserver/18987/1/Thesis_Melanie_ Rinas.pdf.

  15. Marsili G., Remoli A.L., Sgarbanti M., Perrotti E., Fragale A., Battistini A. 2012. HIV-1, interferon and the interferon regulatory factor system: an interplay between induction, antiviral responses and viral evasion. Cytokine Growth Factor Rev. 23, 255–270. https://doi.org/10.1016/j.cytogfr.2012.06.001

    Article  CAS  PubMed  Google Scholar 

  16. Colomer-Lluch M., Ruiz A., Moris A., Prado J.G. 2018. Restriction factors: from intrinsic viral restriction to shaping cellular immunity against HIV-1. Front. Immunol. 9, 2876. https://doi.org/10.3389/fimmu.2018.02876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zotova A.A., Atemasova A.A., Filatov A.V., Mazurov D.V. 2019. HIV restriction factors and their ambiguous role during infection. Mol. Biol. (Moscow). 53 (2), 212–226.

    Article  CAS  Google Scholar 

  18. Chintala K., Mohareer K., Banerjee S. 2021. Dodging the host interferon-stimulated gene mediated innate immunity by HIV-1: a brief update on intrinsic mechanisms and counter-mechanisms. Front. Immunol. 12, 716927. https://doi.org/10.3389/fimmu.2021.716927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gillick K., Pollpeter D., Phalora P., Kim E.-Y., Wolinsky S.M., Malim M.H. 2013. Suppression of HIV-1 infection by APOBEC3 proteins in primary human CD4+ T cells is associated with inhibition of processive reverse transcription as well as excessive cytidine deamination. J. Virol. 87 (3), 1508–1517. -https://doi.org/10.1128/JVI.02587-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Goldstone D.C., Ennis-Adeniran V., Hedden J.J., Groom H.C.T., Rice G.I., Christodoulou E., Walker P.A., Kelly G., Haire L.F., Yap M.W., de Carvalho L.P.S., Stoye J.P., Crow Y.J., Taylor I.A., Webb M. 2011. HIV-1 restriction factor SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase. Nature. 480 (7377), 379–382. https://doi.org/10.1038/nature10623

    Article  CAS  PubMed  Google Scholar 

  21. Descours B., Cribier A., Chable-Bessia C., Ayinde D., Rice G., Crow Y., Yatim A., Schwartz O., Laguette N., Benkirane M. 2012. SAMHD1 restricts HIV-1 reverse transcription in quiescent CD4+ T-cells. Retrovirology. 9 (1), 87. https://doi.org/10.1186/1742-4690-9-87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Casartelli N., Sourisseau M., Feldmann J., Guivel-Benhassine F., Mallet A., Marcelin A.-G., Guatelli J., Schwartz O. 2010. Tetherin restricts productive HIV-1 cell-to-cell transmission. PLoS Pathog. 6 (6), e1000955. https://doi.org/10.1371/journal.ppat.1000955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Strebel K. 2013. HIV accessory proteins versus host restriction factors. Curr. Opin. Virol. 3 (6), 692‒699. https://doi.org/10.1016/j.coviro.2013.08.004

    Article  CAS  PubMed  Google Scholar 

  24. Doranz B.J., Baik S.S.W., Doms R.W. 1999. Use of a gp120 binding assay to dissect the requirements and kinetics of human immunodeficiency virus fusion events. J. Virol. 73, 10346–10358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Doms R.W., Moore J.P. 2000. HIV-1 membrane fusion. J. Cell Biol. 151, F9–F14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gallo S.A., Finnegan C.M., Viard M., Raviv Y., Dimitrov A., Rawat S.S., Puri A., Durell S., Blumenthal R. 2003. The HIV Env-mediated fusion reaction. Biochim. Biophys. Acta. 1614, 36–50.

    Article  CAS  PubMed  Google Scholar 

  27. Bocharov G., Chereshnev V., Gainova I., Bazhan S., Bachmetyev B., Argilaguet J., Martinez J., Meyerhans A. 2012. Human immunodeficiency virus infection: from biological observations to mechanistic mathematical modelling. Math. Model. Nat. Phenom. 7, 78–104.

    Article  Google Scholar 

  28. Ramratnam B., Bonhoeffer S., Binley J., Hurley A., Zhang L., Mittler J.E., Markowitz M., Moore J.P., Perelson A.S., Ho D.D. 1999. Rapid production and clearance of HIV-1 and hepatitis C virus assessed by large volume plasma apheresis. Lancet. 354, 1782–1785.

    Article  CAS  PubMed  Google Scholar 

  29. Finzi D., Siliciano R.F. 1998. Viral dynamics in HIV-1 infection. Cell. 93, 665–671.

    Article  CAS  PubMed  Google Scholar 

  30. Heesters B.A., Lindqvist M., Vagefi P.A., Scully E.P., Schildberg F.A., Altfeld M., Walker B.D., Kaufmann D.E., Carroll M.C. 2015. Follicular dendritic cells retain infectious HIV in cycling endosomes. PLoS Pathog. 11, 1–18.

    Article  Google Scholar 

  31. Raviv Y., Viard M., Bess J. Jr., Blumenthal R. 2002. Quantitative measurement of fusion of HIV-1 and SIV with cultured cells using photosensitized labeling. Virology. 293, 243–251.

    Article  CAS  PubMed  Google Scholar 

  32. Gallo S.A., Reeves J.D., Garg H., Foley B., Doms R.W., Blumenthal R. 2006. Kinetic studies of HIV-1 and HIV-2 envelope glycoprotein-mediated fusion. Retrovirology. 3, 90. https://doi.org/10.1186/1742-4690-3-90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Reddy B., Yin J. 1999. Quantitative intracellular kinetics of HIV type 1. AIDS Res. Hum. Retroviruses. 15, 273–283.

    Article  CAS  PubMed  Google Scholar 

  34. Zarrabi N., Mancini E., Tay J., Shahand S., Sloot P.M. 2010. Modeling HIV-1 intracellular replication: two simulation approaches. Proc. Comput. Sci. 1, 555–564.

    Article  Google Scholar 

  35. Hu W.S., Hughes S.H. 2012. HIV-1 reverse transcription. Cold Spring Harb. Perspect. Med. 2 (10), a006882. https://doi.org/10.1101/cshperspect.a006882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Brussel A., Sonigo P. 2004. Evidence for gene expression by unintegrated human immunodeficiency virus type 1 DNA species. J. Virol. 78, 11263–11271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Murray J.M., McBride K., Boesecke C., Bailey M., Amin J., Suzuki K., Baker D., Zaunders J.J., Emery S., Cooper D.A., Koelsch K.K., Kelleher A.D., PINT STUDY TEAM. 2012. Integrated HIV DNA accumulates prior to treatment while episomal HIV DNA records ongoing transmission afterwards. AIDS. 26 (5), 543–550.

    Article  CAS  PubMed  Google Scholar 

  38. Vandegraaff N., Kumar R., Burrell C.J., Li P. 2001. Kinetics of human immunodeficiency virus type 1 (HIV) DNA integration in acutely infected cells as determined using a novel assay for detection of integrated HIV DNA. J. Virol. 75, 11253–11260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Barbosa P., Charneau P., Dumey N., Clavel F. 1994. Kinetic analysis of HIV-1 early replicative steps in a coculture system. AIDS Res. Hum. Retroviruses. 10, 53–59.

    Article  CAS  PubMed  Google Scholar 

  40. Mohammadi P., Desfarges S., Barha I., Joos B., Zangger N., Muñoz M., Günthard H.F., Beerenwinkel N., Telenti A., Ciuffi A. 2013. 24 hours in the life of HIV-1 in a T cell line. PLOS Pathog. 9 (1), e1003161. https://doi.org/10.1371/journal.ppat.1003161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Andreadis S.T., Palsson B.O. 1996. Kinetics of retrovirus mediated gene transfer: the importance of intracellular half-life of retroviruses. J. Theor. Biol., 182, 1–20.

    Article  CAS  PubMed  Google Scholar 

  42. Pellegrino M.G., Li G., Potash M.J., Volsky D.J. 1991. Contribution of multiple rounds of viral entry and reverse transcription to expression of human immunodeficiency virus type 1. A quantitative kinetic study. J. Biol. Chem. 266, 1783–1788.

    Article  CAS  PubMed  Google Scholar 

  43. Butler S.L., Hansen M.S., Bushman F.D. 2001. A quantitative assay for HIV DNA integration in vivo. Nat. Med. 7, 631–634.

    Article  CAS  PubMed  Google Scholar 

  44. Kustikova O.S., Wahlers A., Kuhlcke K., Stahle B., Zander A.R., Baum C., Fehse B. 2003. Dose finding with retroviral vectors: correlation of retroviral vector copy numbers in single cells with gene transfer efficiency in a cell population. Blood. 102, 3934–3937.

    Article  CAS  PubMed  Google Scholar 

  45. Siliciano J.D., Kajdas J., Finzi D., Quinn T.C., Chadwick K., Margolick J.B., Kovacs C., Gange S.J., Siliciano R. 2003. Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells. Nat. Med. 9, 727–728.

    Article  CAS  PubMed  Google Scholar 

  46. Hultquist J.F., Harris R.S. 2009. Leveraging APOBEC3 proteins to alter the HIV mutation rate and combat AIDS. Future Virol. 4 (6), 605. https://doi.org/10.2217/fvl.09.59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Laguette N., Sobhian B., Casartelli N., Ringeard M., Chable-Bessia C., Ségéral E., Yatim A., Emiliani S., Schwartz O., Benkirane M. 2013. SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature. 474, 654–657. https://doi.org/10.1038/nature10117

    Article  CAS  Google Scholar 

  48. Kim H., Yin J. 2005. Robust growth of human immunodeficiency virus type 1 (HIV-1). Biophys. J. 89, 2210–2221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chen J., Grunwald D., Sardo L., Galli A., Plisov S., Nikolaitchik O.A., Chen D., Lockett S., Larson D.R., Pathak V.K., Hu W.-Sh. 2014. Cytoplasmic HIV-1 RNA is mainly transported by diffusion in the presence or absence of Gag protein. Proc. Natl. Acad. Sci. U. S. A. 111 (48), E5205–E5213. https://doi.org/10.1073/pnas.14131691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Likhoshvai V.A., Khlebodarova T.M., Bazhan S.I., Gainova I.A., Chereshnev V.A., Bocharov G.A. 2014. Mathematical model of the Tat-Rev regulation of HIV-1 replication in an activated cell predicts the existence of oscillatory dynamics in the synthesis of viral components. BMC Genomics. 15 (Suppl. 12), S1. https://doi.org/10.1186/1471-2164-15-S12-S1

    Article  PubMed  PubMed Central  Google Scholar 

  51. Müller B., Tessmerand U., Schubert U., Kräusslich H.-S. 2000. Human immunodeficiency virus type 1 Vpr protein is incorporated into the virion in significantly smaller amounts than gag and is phosphorylated in infected cells. J. Virol. 74 (20), 9727–9731.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Goila–Gaur R., Strebel K. 2008. HIV-1 Vif, APOBEC, and intrinsic immunity. Retrovirology. 5, 51. https://doi.org/10.1186/1742-4690-5-51

  53. Schwanhäusser B., Busse D., Li N., Dittmar G., Schuchhardt J., Wolf J., Chen W., Selbach M. 2011. Global quantification of mammalian gene expression control. Nature. 473, 337–342.

    Article  PubMed  Google Scholar 

  54. Schwanhäusser B., Busse D., Li N., Dittmar G., Schuchhardt J., Wolf J., Chen W., Selbach M. 2013. Correction: Corrigendum: Global quantification of mammalian gene expression control. Nature. 495, 126–127.

    Article  PubMed  Google Scholar 

  55. Buccitelli C., Selbach M. 2020. mRNAs, proteins and the emerging principles of gene expression control. Nat. Rev. Genet. 21, 630–644.

    Article  CAS  PubMed  Google Scholar 

  56. Qu N., Ma Z., Zhang M., Rushdi M.N., Krueger C.J., Chen A.K. 2018. Inhibition of retroviral Gag assembly by non-silencing miRNAs promotes autophagic viral degradation. Protein Cell. 9, 640–651.

    Article  CAS  PubMed  Google Scholar 

  57. Hare J.F., Taylor K. 1991. Mechanisms of plasma membrane protein degradation: recycling proteins are degraded more rapidly than those confined to the cell surface. Proc. Natl. Acad. Sci. U. S. A. 88, 5902–5906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Inamdar K., Floderer C., Favard C., Muriaux D. 2019. Monitoring HIV-1 assembly in living cells: insights from dynamic and single molecule microscopy. Viruses. 11 (1), 72. https://doi.org/10.3390/v11010072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sundquist W.I., Krausslich H.G. 2012. HIV-1 assembly, budding, and maturation. Cold Spring Harb. Perspect. Med. 2 (7), a006924. https://doi.org/10.1101/cshperspect.a006924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ivanchenko S., Godinez W.J., Lampe M., Kräusslich H.G., Eils R., Rohr K., Bräuchle C., Müller B., Lamb D.C. 2009. Dynamics of HIV-1 assembly and release. PLoS Pathog. 5 (11), e1000652. https://doi.org/10.1371/journal.ppat.1000652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Freed E.O. 2015. HIV-1 assembly, release and maturation. Nat. Rev. Microbiol, 13 (8), 484–496. https://doi.org/10.1038/nrmicro3490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Swanson C.M., Malim M.H. 2008. SnapShot: HIV-1 proteins. Cell. 133 (4), 742. https://doi.org/10.1016/j.cell.2008.05.005

    Article  PubMed  Google Scholar 

  63. Chojnacki J., Staudt T., Glass B., Bingen P., Engelhardt J., Anders M., Schneider J., Muller B., Hell S.W., Krausslich H.G. 2012. Maturation-dependent HIV-1 surface protein redistribution revealed by fluorescence nanoscopy. Science, 338, 524–528.

    Article  CAS  PubMed  Google Scholar 

  64. Könnyũ B., Sadiq S.K., Turányi T., Hírmondó R., Müller B., Kräusslich H.G., Coveney P.V., Müller V. 2013. Gag-Pol processing during HIV-1 virion maturation: a systems biology approach. PLoS Comput. Biol. 9 (6), e1003103. https://doi.org/10.1371/journal.pcbi.1003103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Prakash A., Levy D.E. 2006. Regulation of IRF7 through cell type-specific protein stability. Biochem. Biophys. Res. Commun. 342 (1), 50–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gelais C.S., Kim S.H., Ding L., Yount J.S., Ivanov D., Spearman P., Wu L. 2016. A putative cyclin-binding motif in human samhd1 contributes to protein phosphorylation, localization, and stability. J. Biol. Chem. 291 (51), 26332–26342.

    Article  CAS  Google Scholar 

  67. Dubé M., Bego M., Paquay C., Cohen E. 2010. Modulation of HIV-1–host interaction: role of the Vpu accessory protein. Retrovirology. 7, 114. https://doi.org/10.1186/1742-4690-7-114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Baldauf H.M., Pan X., Erikson E., Schmidt S., Daddacha W., Burggraf M., Schenkova K., Ambiel I., Wabnitz G., Gramberg T., Panitz S., Flory E., Landau N.R., Sertel S., Rutsch F., Lasitschka F., Kim B., König R., Fackler O.T.,Keppler O.T. 2012. SAMHD1 restricts HIV-1 infection in resting CD4+ T-cells. Nat. Med. 18 (11), 1682–1688.

    Article  CAS  PubMed  Google Scholar 

  69. Bishop K.N., Verma M., Kim E.-Y., Wolinsky S.M., Malim M.H. 2008. APOBEC3G inhibits elongation of HIV-1 reverse transcripts. PLoS Pathog. 4 (12), e1000231. https://doi.org/10.1371/journal.ppat.1000231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Marchuk G.I. 2006. Adjoint equations and their applications. Proc. Steklov Inst. Math. 253 (Suppl. 1), S196–S207.

    Article  Google Scholar 

  71. Marchuk G.I., Shutyaev V., Bocharov G. 2005. Adjoint equations and analysis of complex systems: Application to virus infection modelling. J. Comput. Appl. Math. 184 (1), 177–204.

    Article  Google Scholar 

  72. Fadeev S.I., Pokrovskaya S.A., Berezin A.Yu., Gaynova I.A. 1998. Paket programm STEP dlya chislennogo issledovaniya sistem nelineinykh uravnenii i avtonomnykh sistem obshchego vida. Opisanie raboty paketa STEP na primerakh zadach iz uchebnogo kursa “Inzhenernaya khimiya kataliticheskikh protsessov. (STEP Software Package for Numerical Study of Systems of Nonlinear Equations and Autonomous Systems of General Form. Description of the STEP Package on Examples of Problems from the Course “Engineering Chemistry of Catalytic Processes”). Novosibirsk: Novosibirsk. Gos. Univ.

  73. Rand U., Rinas M., Schwerk J., Nöhren G., Linnes M., Kröger A., Flossdorf M., Kály-Kullai K., Hauser H., Höfer T., Köster M. 2012. Multi-layered stochasticity and paracrine signal propagation shape the type-I interferon response. Mol. Syst. Biol. 8, 584.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Huang Y., Dai H., Ke R. 2019. Principles of effective and robust innate immune response to viral infections: a multiplex network analysis. Front. Immunol. 10, 1736. https://doi.org/10.3389/fimmu.2019.01736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. He B., Tran J.T., Sanchez D.J. 2019. Manipulation of type I interferon signaling by HIV and AIDS-associated viruses. J. Immunol. Res. 4, 8685312. https://doi.org/10.1155/2019/8685312

    Article  CAS  Google Scholar 

  76. Conway J.M., Ribeiro R.M. 2018. Modeling the immune response to HIV infection. Curr. Opin. Syst. Biol. 12, 61–69. https://doi.org/10.1016/j.coisb.2018.10.006

    Article  PubMed  PubMed Central  Google Scholar 

  77. Ranganath N., Sandstrom T.S., Fadel S., Côté S.C., Angel J.B. 2016. Type I interferon responses are impaired in latently HIV infected cells. Retrovirology. 13 (66). https://doi.org/10.1186/s12977-016-0302-9

  78. Cheng L., Yu H., Li G., Li F., Ma J., Li J., Chi L., Zhang L., Su L. 2017. Type I interferons suppress viral replication but contribute to T cell depletion and dysfunction during chronic HIV-1 infection. JCI Insight. 2 (12), e94366. https://doi.org/10.1172/jci.insight.94366

    Article  PubMed  PubMed Central  Google Scholar 

  79. Carnathan D., Lawson B., Yu J., Patel K., Billingsley J.M., Tharp G.K., Delmas O.M., Dawoud R., Wilkinson P., Nicolette C., Cameron M.J., Sekaly R.P., Bosinger S.E., Silvestri G., Vanderford T.H. 2018. Reduced chronic lymphocyte activation following interferon alpha blockade during the acute phase of simian immunodeficiency virus infection in rhesus macaques. J. Virol. 92 (9), e01760-17. https://doi.org/10.1128/JVI.01760-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sanchez D.J., Miranda D. Jr., Marsden M.D., Dizon T.M.A., Bontemps J.R., Davila S.J., Del Mundo L.E., Ha T., Senaati A., Zack J.A., Cheng G. 2015. Disruption of type I interferon induction by HIV infection of T cells. PLoS One. 10 (9), e0137951.https://doi.org/10.1371/journal.pone.0137951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wong H.S., Germain R.N. 2018. Robust control of the adaptive immune system. Semin. Immunol. 36, 17‒27. https://doi.org/10.1016/j.smim.2017.12.009

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the reviewers and editors for important comments and corrections during the work on the article.

Funding

The work was carried out within the framework of the State Assignment (project FWNF-2022-0015; I.A. Gainova) and with the financial support of the Russian Foundation for Basic Research (grant no. 20-01-00352; A.E. Soboleva, D.S. Grebennikov, G.A. Bocharov).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Gainova.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving humans or animals as research subjects.

Additional information

Abbreviations: HIV, human immunodeficiency virus; IFN, interferon(s); cDNA, complementary DNA; dsRNA, double-spliced RNA; gRNA, genomic RNA; full-length RNA; ISGs, interferon-stimulated genes; ssRNA, single-spliced RNA.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gainova, I.A., Soboleva, A.E., Grebennikov, D.S. et al. Mathematical Modeling of HIV Replication and the Response of the Interferon System. Mol Biol 57, 700–713 (2023). https://doi.org/10.1134/S0026893323040076

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893323040076

Keywords:

Navigation