Skip to main content
Log in

Poly(ADP-Ribose) Polymerases 1 and 2: Classical Functions and Interaction with New Histone Poly(ADP-Ribosyl)ation Factor HPF1

  • CELL MOLECULAR BIOLOGY: FROM DNA REPAIR TO METABOLOMICS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Poly(ADP-ribose) (PAR) is a negatively charged polymer, linear or branched, that consists of ADP-ribose monomers. PAR is synthesized by poly(ADP-ribose)polymerase (PARP) enzymes, which are activated upon DNA damage and use nicotinamide adenine dinucleotide (NAD+) as a substrate. The best-studied members of the PARP family, PARP1 and PARP2, are the most important nuclear proteins involved in many cell processes, including the regulation of DNA repair. PARP1 and PARP2 catalyze PAR synthesis and transfer to amino acid residues of target proteins, including autoPARylation. PARP1 and PARP2 are promising targets for chemotherapy in view of their key role in regulating DNA repair. A novel histone PARylation factor (HPF1) was recently discovered to modulate PARP1/2 activity by forming a transient joint active site with PARP1/2. Histones are modified at serine residues in the presence of HPF1. The general mechanism of the interaction between HPF1 and PARP1/2 is a subject of intense research now. The review considers the discovery and classical mechanism of PARylation in higher eukaryotes and the role of HPF1 in the process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Kraus W.L. 2015. PARPs and ADP-ribosylation: 50  years… and counting. Mol. Cell. 58, 902–910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gibson B.A., Kraus W.L. 2012. New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs. Nat. Rev. Mol. Cell Biol. 13, 411–424.

    Article  CAS  PubMed  Google Scholar 

  3. Wei H., Yu X. 2016. Functions of PARylation in DNA damage repair pathways. Genomics Proteomics Bioinf. 14, 131–139.

    Article  Google Scholar 

  4. Cohen M.S., Chang P. 2018. Insights into the biogenesis, function, and regulation of ADP-ribosylation. Nat. Chem. Biol. 14, 236–243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kraus W.L. 2020. PARPs and ADP-ribosylation: 60 years on. Genes Dev. 34, 251–253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. O’Sullivan J., Tedim Ferreira M., Gagné J.P., Sharma A.K., Hendzel M.J., Masson J.Y., Poirier G.G. 2019. Emerging roles of eraser enzymes in the dynamic control of protein ADP-ribosylation. Nat. Commun. 10 (1), 1182.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Perina, D., Mikoč A., Ahel J., Ćetković H., Žaja R., Ahel I. 2014. Distribution of protein poly(ADP-ribosyl)ation systems across all domains of life. DNA Repair (Amst.). 23, 4–16.

    Article  CAS  PubMed  Google Scholar 

  8. Žaja R., Mikoč A., Barkauskaite E., Ahel I. 2012. Molecular insights into poly(ADP-ribose) recognition and processing. Biomolecules. 3, 1–17.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hanzlikova H., Kalasova I., Demin A.A., Pennicott L.E., Cihlarova Z., Caldecott K.W. 2018. The importance of poly(ADP-ribose) polymerase as a sensor of unligated Okazaki fragments during DNA replication. Mol. Cell. 71, 319‒331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hanzlikova H., Gittens W., Krejcikova K., Zeng Z., Caldecott K.W. 2017. Overlapping roles for PARP1 and PARP2 in the recruitment of endogenous XRCC1 and PNKP into oxidized chromatin. Nucleic Acids Res. 45, 2546–2557.

    CAS  PubMed  Google Scholar 

  11. Buch-Larsen S.C., Rebak A.K.L.F.S., Hendriks I.A., Nielsen M.L. 2021. Temporal and site-specific ADP-ribosylation dynamics upon different genotoxic stresses. Cells. 10 (11), 2927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hoch N.C., Polo L.M. 2019. ADP-ribosylation: from molecular mechanisms to human disease. Genet. Mol. Biol. 43, e20190075.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ray Chaudhuri A., Nussenzweig A. 2017. The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nat. Rev. Mol. Cell Biol. 18, 610–621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Soldani C., Scovassi A.I. 2002. Poly(ADP-ribose) polymerase-1 cleavage during apoptosis: an update. Apoptosis. 7, 321–328.

    Article  CAS  PubMed  Google Scholar 

  15. D’Amours D., Sallmann F.R., Dixit V.M., Poirier G.G. 2001. Gain-of-function of poly(ADP-ribose) polymerase-1 upon cleavage by apoptotic proteases: implications for apoptosis. J. Cell Sci. 114 (Pt. 20), 3771–3778.

    Article  PubMed  Google Scholar 

  16. D’Amours D., Desnoyers S., D’Silva I., Poirier G.G. 1999. Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem. J. 342 (Pt. 2), 249–268.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lavrik O.I. 2020. PARPs’ impact on base excision DNA repair. DNA Repair (Amst.). 93, 102911.

    Article  CAS  PubMed  Google Scholar 

  18. Vasil’eva I., Moor N., Anarbaev R., Kutuzov M., Lavrik O. 2021. Functional roles of PARP2 in assembling protein‒protein complexes involved in base excision DNA repair. Int. J. Mol. Sci. 22, 4679.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Khodyreva S.N., Lavrik O.I. 2016. Poly(ADP-ribose) polymerase 1 as a key regulator of DNA repair. Mol. Biol. (Moscow). 50, 655–673.

    Article  CAS  Google Scholar 

  20. Sukhanova M.V., Hamon L., Kutuzov M.M., Joshi V., Abrakhi S., Dobra I., Curmi P.A., Pastre D., Lavrik O.I. 2019. A single-molecule atomic force microscopy study of PARP1 and PARP2 recognition of base excision repair DNA intermediates. J. Mol. Biol. 431, 2655–2673.

    Article  CAS  PubMed  Google Scholar 

  21. Moor N.A., Vasil’eva I.A., Kuznetsov N.A., Lavrik O.I. 2020. Human apurinic/apyrimidinic endonuclease 1 is modified in vitro by poly(ADP-ribose) polymerase 1 under control of the structure of damaged DNA. Biochimie. 168, 144–155.

    Article  CAS  PubMed  Google Scholar 

  22. Sukhanova M.V. Lavrik O.I., Khodyreva S.N. 2004. Poly(ADP-ribose) polymerase-1: a regulator of protein–nucleic acid interactions in processes responding to genotoxic impact. Mol. Biol. (Moscow). 38, 706–717.

    Article  CAS  Google Scholar 

  23. Sukhanova M.V., Khodyreva S.N., Lebedeva N.A., Prasad R., Wilson S.H., Lavrik O.I. 2005. Human base excision repair enzymes apurinic/apyrimidinic endonuclease1 (APE1), DNA polymerase β and poly(ADP-ribose) polymerase 1: interplay between strand-displacement DNA synthesis and proofreading exonuclease activity. Nucleic Acids Res. 33, 1222–1229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sukhanova M., Khodyreva S., Lavrik O. 2010. Poly(ADP-ribose) polymerase 1 regulates activity of DNA polymerase β in long patch base excision repair. Mutat. Res. 685, 80–89.

    Article  CAS  PubMed  Google Scholar 

  25. Moor N.A., Lavrik O.I. 2018. Protein–protein interactions in DNA base excision repair. Biochemistry (Moscow). 83, 411–422.

    CAS  PubMed  Google Scholar 

  26. Kutuzov M.M., Belousova E.A., Kurgina T.A., Ukraintsev A.A., Vasil’eva I.A., Khodyreva S.N., Lavrik O.I. 2021. The contribution of PARP1, PARP2 and poly(ADP-ribosyl)ation to base excision repair in the nucleosomal context. Sci. Rep. 11, 4849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Caron M.C., Sharma A.K., O’Sullivan J., Myler L.R., Ferreira M.T., Rodrigue A., Coulombe Y., Ethier C., Gagné J.P., Langelier M.F., Pascal J.M., Finkelstein I.J., Hendzel M.J., Poirier G.G., Masson J.Y. 2019. Poly(ADP-ribose) polymerase-1 antagonizes DNA resection at double-strand breaks. Nat. Commun. 10, 2954.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Krasikova Y., Rechkunova N., Lavrik O. 2021. Nucleotide excision repair: from molecular defects to neurological abnormalities. Int. J. Mol. Sci. 22, 6220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Maltseva E.A., Rechkunova N.I., Sukhanova M.V., Lavrik O.I. 2015. Poly(ADP-ribose) polymerase 1 modulates interaction of the nucleotide excision repair factor XPC-RAD23B with DNA via Poly(ADP-ribosyl)ation. J. Biol. Chem. 290, 21811–21820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Flippot R., Patrikidou A., Aldea M., Colomba E., Lavaud P., Albigès L., Naoun N., Blanchard P., Terlizzi M., Garcia C., Bernard-Tessier A., Fuerea A., Di Palma M., Escudier B., Loriot Y., Baciarello G., Fizazi K. 2022. PARP inhibition, a new therapeutic avenue in patients with prostate cancer. Drugs. 82 (7), 719‒733.

    Article  CAS  PubMed  Google Scholar 

  31. Spiegel J.O., van Houten B., Durrant J.D. 2021. PARP1: structural insights and pharmacological targets for inhibition. DNA Repair (Amst.). 103, 103125.

    Article  CAS  PubMed  Google Scholar 

  32. Dizdar O., Arslan C., Altundag K. 2015. Advances in PARP inhibitors for the treatment of breast cancer. Exp. Opin. Pharmacother. 16, 2751–2758.

    Article  CAS  Google Scholar 

  33. Curtin N.J., Szabo C. 2020. Poly(ADP-ribose) polymerase inhibition: past, present and future. Nat. Rev. Drug Discov. 19, 711–736.

    Article  CAS  PubMed  Google Scholar 

  34. Schreiber V., Illuzzi G., Héberlé E., Dantzer F. 2015. From poly(ADP-ribose) discovery to PARP inhibitors in cancer therapy. Bull. Cancer. 102, 863–873.

    Article  PubMed  Google Scholar 

  35. Sim H.W., Galanis E., Khasraw M. 2022. PARP inhibitors in glioma: a review of therapeutic opportunities. Cancers (Basel). 14. 1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sonnenblick A., de Azambuja E., Azim H.A., Piccart M. 2015. An update on PARP inhibitors‒moving to the adjuvant setting. Nat. Rev. Clin. Oncol. 12, 27–41.

    Article  CAS  PubMed  Google Scholar 

  37. Gibbs-Seymour I., Fontana P., Rack J.G.M., Ahel I. 2016. HPF1/C4orf27 is a PARP-1-interacting protein that regulates PARP-1 ADP-ribosylation activity. Mol. Cell. 62, 432–442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Suskiewicz M.J., Zobel F., Ogden T.E.H., Fontana P., Ariza A., Yang J.C., Zhu K., Bracken L., Hawthorne W.J., Ahel D., Neuhaus D., Ahel I. 2020. HPF1 completes the PARP active site for DNA damage-induced ADP-ribosylation. Nature. 579, 598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bonfiglio J.J., Fontana P., Zhang Q., Colby T., Gibbs-Seymour I., Atanassov I., Bartlett E., Zaja R., Ahel I., Matic I. 2017. Serine ADP-ribosylation depends on HPF1. Mol. Cell. 65, 932‒940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Palazzo L., Leidecker O., Prokhorova E., Dauben H., Matic I., Ahel I. 2018. Serine is the major residue for ADP-ribosylation upon DNA damage. Elife. 7, e34334.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Leidecker O., Bonfiglio J.J., Colby T., Zhang Q., Atanassov I., Zaja R., Palazzo L., Stockum A., Ahel I., Matic I. 2016. Serine is a new target residue for endogenous ADP-ribosylation on histones. Nat. Chem. Biol. 12, 998–1000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sun F.H., Zhao P., Zhang N., Kong L.L., Wong C.C.L., Yun C.H. 2021. HPF1 remodels the active site of PARP1 to enable the serine ADP-ribosylation of histones. Nat. Commun. 12, 1028.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Chambon P., Weill J.D., Mandel P. 1963. Nicotinamide mononucleotide activation of new DNA-dependent polyadenylic acid synthesizing nuclear enzyme. Biochem. Biophys. Res. Commun. 11, 39–43.

    Article  CAS  PubMed  Google Scholar 

  44. Chambon P., Weill J.D., Doly J., Strosser M.T., Mandel P. 1966. On the formation of a novel adenylic compound by enzymatic extracts of liver nuclei. Biochem. Biophys. Res. Commun. 25, 638–643.

    Article  CAS  Google Scholar 

  45. Fujimura S., Hasegawa S., Shimizu Y., Sugimura T. 1967. Polymerization of the adenosine 5'-diphosphate-ribose moiety of nicotinamide-adenine dinucleotide by nuclear enzyme. I. Enzymatic reactions. Biochim. Biophys. Acta. 145, 247–259.

    Article  CAS  PubMed  Google Scholar 

  46. Sugimura T., Miwa M. 1994. Poly(ADP-ribose): historical perspective. Mol. Cell. Biochem. 138, 5–12.

    Article  CAS  PubMed  Google Scholar 

  47. Langelier M.F., Eisemann T., Riccio A.A., Pascal J.M. 2018. PARP family enzymes: regulation and catalysis of the poly(ADP-ribose) posttranslational modification. Curr. Opin. Struct. Biol. 53, 187–198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Amé J.C., Spenlehauer C., de Murcia G. 2004. The PARP superfamily. BioEssays. 26, 882–893.

    Article  PubMed  Google Scholar 

  49. Otto H., Reche P.A., Bazan F., Dittmar K., Haag F., Koch-Nolte F. 2005. In silico characterization of the family of PARP-like poly(ADP-ribosyl)transferases (pARTs). BMC Genomics. 6, 139.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ferro A.M., Minaga T., Piper W.N., Kun E. 1978. Analysis of larger than tetrameric poly(adenosine diphosphoribose) by a radioimmunoassay in nuclei separated in organic solvents. Biochim. Biophys. Acta. 519, 291–305.

    Article  CAS  PubMed  Google Scholar 

  51. Hassa P.O., Haenni S.S., Elser M., Hottiger M.O. 2006. Nuclear ADP-ribosylation reactions in mammalian cells: where are we today and where are we going? Microbiol. Mol. Biol. Rev. 70, 789–829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Alemasova E.E., Lavrik O.I. 2019. Poly(ADP-ribosyl)ation by PARP1: reaction mechanism and regulatory proteins. Nucleic Acids Res. 47, 3811–3827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Koh D.W., Dawson V.L., Dawson T.M. 2005. The road to survival goes through PARG. Cell Cycle. 4, 397–399.

    Article  CAS  PubMed  Google Scholar 

  54. Han S., Tainer J.A. 2001. The ARTT motif and a unified structural understanding of substrate recognition in ADP-ribosylating bacterial toxins and eukaryotic ADP-ribosyltransferases. Int. J. Med. Microbiol. 291, 523–529.

    Article  Google Scholar 

  55. Schreiber V., Dantzer F., Amé J.C., de Murcia G. 2006. Poly(ADP-ribose): novel functions for an old molecule. Nat. Rev. Mol. Cell. Biol. 7, 517–528.

    Article  CAS  PubMed  Google Scholar 

  56. Pascal J.M., Ellenberger T. 2015. The rise and fall of poly(ADP-ribose): an enzymatic perspective. DNA Repair (Amst.). 32, 10–16.

    Article  CAS  PubMed  Google Scholar 

  57. Amé J.C., Rolli V., Schreiber V., Niedergang C., Apiou F., Decker P., Muller S., Höger T., Ménissier-de Murcia J., de Murcia G. 1999. PARP-2, a novel mammalian DNA damage-dependent poly(ADP-ribose) polymerase. J. Biol. Chem. 274, 17860–17868.

    Article  PubMed  Google Scholar 

  58. Eisemann T., Pascal J.M. 2020. Poly(ADP-ribose) polymerase enzymes and the maintenance of genome integrity. Cell. Mol. Life Sci. 77, 19–33.

    Article  CAS  PubMed  Google Scholar 

  59. Ghosh R., Roy S., Kamyab J., Dantzer F., Franco S. 2016. Common and unique genetic interactions of the poly(ADP-ribose) polymerases PARP1 and PARP2 with DNA double-strand break repair pathways. DNA Repair. 45, 56–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ruf A., de Murcia J.M., de Murcia G.M., Schulz G.E. 1996. Structure of the catalytic fragment of poly(AD-ribose) polymerase from chicken. Proc. Natl. Acad. Sci. U. S. A. 93, 7481–7485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Langelier M.F., Planck J.L., Roy S., Pascal J.M. 2012. Structural basis for DNA damage-dependent p-oly(ADP-ribosyl)ation by human PARP-1. Science. 336, 728–732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Langelier M.F., Ruhl D.D., Planck J.L., Kraus W.L., Pascal J.M. 2010. The Zn3 domain of human p-oly(ADP-ribose) polymerase-1 (PARP-1) functions in both DNA-dependent poly(ADP-ribose) synthesis activity and chromatin compaction. J. Biol. Chem. 285, 18877–18887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Langelier M.F., Planck J.L., Roy S., Pascal J.M. 2011. Crystal structures of poly(ADP-ribose) polymerase-1 (PARP-1) zinc fingers bound to DNA: structural and functional insights into DNA-dependent PARP-1 activity. J. Biol. Chem. 286, 10690–10701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Prokhorova E., Zobel F., Smith R., Zentout S., Gibbs-Seymour I., Schützenhofer K., Peters A., Groslambert J., Zorzini V., Agnew T., Brognard J., Nielsen M.L., Ahel D., Huet S., Suskiewicz M.J., Ahel I. 2021. Serine-linked PARP1 auto-modification controls PARP inhibitor response. Nat. Commun. 12, 4055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Rudolph J., Muthurajan U.M., Palacio M., Mahadevan J., Roberts G., Erbse A.H., Dyer P.N., Luger K. 2021. The BRCT domain of PARP1 binds intact DNA and mediates intrastrand transfer. Mol. Cell. 81, 4994‒5006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tao Z., Gao P., Liu H.W. 2009. Identification of the ADP-ribosylation sites in the PARP-1 automodification domain: Analysis and implications. J. Am. Chem. Soc. 131, 14258–14260.

    Article  CAS  PubMed  Google Scholar 

  67. Obaji E., Haikarainen T., Lehtiö L. 2018. Structural basis for DNA break recognition by ARTD2/PARP2. Nucleic Acids Res. 46, 12154–12165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Obaji E., Haikarainen T., Lehtiö L. 2016. Characterization of the DNA dependent activation of human ARTD2/PARP2. Sci. Rep. 6, 34487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Rudolph J., Mahadevan J., Dyer P., Luger K. 2018. Poly(ADP-ribose) polymerase 1 searches DNA via a “monkey bar” mechanism. Elife. 7, e37818.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Riccio A.A., Cingolani G., Pascal J.M. 2016. PARP-2 domain requirements for DNA damage-dependent activation and localization to sites of DNA damage. Nucleic Acids Res. 44, 1691–1702.

    Article  PubMed  Google Scholar 

  71. Sukhanova M.V., Abrakhi S., Joshi V., Pastre D., Kutuzov M.M., Anarbaev R.O., Curmi P.A., Hamon L., Lavrik O.I. 2015. Single molecule detection of PARP1 and PARP2 interaction with DNA strand breaks and their poly(ADP-ribosyl)ation using high-resolution AFM imaging. Nucleic Acids Res. 44, e60.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Kutuzov M.M., Khodyreva S.N., Amé J.C., Ilina E.S., Sukhanova M.V., Schreiber V., Lavrik O.I. 2013. Interaction of PARP-2 with DNA structures mimicking DNA repair intermediates and consequences on activity of base excision repair proteins. Biochimie. 95, 1208–1215.

    Article  CAS  PubMed  Google Scholar 

  73. D’Silva I., Pelletier J.D., Lagueux J., D’Amours D., Chaudhry M.A., Weinfeld M., Lees-Miller S.P., Poirier G.G. 1999. Relative affinities of poly(ADP-ribose) polymerase and DNA-dependent protein kinase for DNA strand interruptions. Biochim. Biophys. Acta. 1430, 119–126.

    Article  PubMed  Google Scholar 

  74. Langelier M.F., Riccio A.A., Pascal J.M. 2014. PARP-2 and PARP-3 are selectively activated by 5' phosphorylated DNA breaks through an allosteric regulatory mechanism shared with PARP-1. Nucleic Acids Res. 42, 7762–7775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Cistulli C., Lavrik O.I., Prasad R., Hou E., Wilson S.H. 2004. AP endonuclease and poly(ADP-ribose) polymerase-1 interact with the same base excision repair intermediate. DNA Repair (Amst.). 3, 581–591.

    Article  CAS  PubMed  Google Scholar 

  76. Khodyreva S.N., Prasad R., Ilina E.S., Sukhanova M.V., Kutuzov M.M., Liu Y., Hou E.W., Wilson S.H., Lavrik O.I. 2010. Apurinic/apyrimidinic (AP) site recognition by the 5'-dRP/AP lyase in poly(ADP-ribose) polymerase-1 (PARP-1). Proc. Natl. Acad. Sci. U. S. A. 107, 22090–22095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lavrik O.I., Prasad R., Sobol R.W., Horton J.K., Ackerman E.J., Wilson S.H. 2001. Photoaffinity labeling of mouse fibroblast enzymes by a base excision repair intermediate. Evidence for the role of poly(ADP-ribose) polymerase-1 in DNA repair. J. Biol. Chem. 276, 25541–25548.

    Article  CAS  PubMed  Google Scholar 

  78. Ménissier de Murcia J., Ricoul M., Tartier L., Niedergang C., Huber A., Dantzer F., Schreiber V., Amé J.C., Dierich A., LeMeur M., Sabatier L., Chambon P., de Murcia G. 2003. Functional interaction between PARP-1 and PARP-2 in chromosome stability and embryonic development in mouse. EMBO J. 22, 2255–2263.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Nicolás L., Martínez C., Baró C., Rodríguez M., Baroja-Mazo A., Sole F., Flores J.M., Ampurdanés C., Dantzer F., Martin-Caballero J., Aparicio P., Yelamos J. 2010. Loss of poly(ADP-ribose) polymerase-2 leads to rapid development of spontaneous T-cell lymphomas in p53-deficient mice. Oncogene. 29, 2877–2883.

    Article  PubMed  Google Scholar 

  80. Farreś J., Martín-Caballero J., Martínez C., Lozano J. J., Llacuna L., Ampurdanés C., Ruiz-Herguido C., Dantzer F., Schreiber V., Villunger A., Bigas A., Yélamos J. 2013. Parp-2 is required to maintain hematopoiesis following sublethal γ-irradiation in mice. Blood. 122, 44–54.

    Article  PubMed  Google Scholar 

  81. Farrés J., Llacuna L., Martin-Caballero J., Martínez C., Lozano J.J., Ampurdanés C., López-Contreras A.J., Florensa L., Navarro J., Ottina E., Dantzer F., Schreibe-r V., Villunger A., Fernández-Capetillo O., Yélamos J. 2015. PARP-2 sustains erythropoiesis in mice by limiting replicative stress in erythroid progenitors. Cell Death Differ. 22, 1144–1157.

    Article  PubMed  Google Scholar 

  82. Alemasova E.E., Naumenko K.N., Kurgina T.A., Anarbaev R.O., Lavrik O.I. 2018. The multifunctional protein YB-1 potentiates PARP1 activity and decreases the efficiency of PARP1 inhibitors. Oncotarget. 9, 23349-23365.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Naumenko K.N., Sukhanova M.V., Hamon L., Kurgina T.A., Alemasova E.E., Kutuzov M.M., Pastré, D., Lavrik O.I. 2020. Regulation of poly(ADP-Ribose) polymerase 1 activity by Y-box-binding protein 1. Biomolecules. 10, 1325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sun X., Fu K., Hodgson A., Wier E.M., Wen M.G., Kamenyeva O., Xia X., Koo L.Y., Wan F. 2016. Sam68 is required for DNA damage responses via regulating poly(ADP-ribosyl)ation. PLoS Biol. 14, e1002543.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Sukhanova M.V., Singatulina A.S., Pastré D., Lavrik O.I. 2020. Fused in sarcoma (FUS) in DNA repair: tango with poly(ADP-ribose) polymerase 1 and compartmentalisation of damaged DNA. Int. J. Mol. Sci. 21, 7020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Obaji E., Maksimainen M.M., Galera-Prat A., Lehtiö L. 2021. Activation of PARP2/ARTD2 by DNA damage induces conformational changes relieving enzyme autoinhibition. Nat. Commun. 12, 3479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Dawicki-McKenna J.M., Langelier M.F., DeNizio J.E., Riccio A.A., Cao C.D., Karch K.R., McCauley M., Steffen J.D., Black B.E., Pascal J.M. 2015. PARP-1 activation requires local unfolding of an autoinhibitory domain. Mol. Cell. 60, 755–768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Langelier M.F., Pascal J M. 2013. PARP-1 mechanism for coupling DNA damage detection to poly(ADP-ribose) synthesis. Curr. Opin. Struct. Biol. 23, 134–143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ogden T.E.H., Yang J.C., Schimpl M., Easton L.E., Underwood E., Rawlins P.B., McCauley M.M., Langelier M.F., Pascal J.M., Embrey K.J., Neuhaus D. 2021. Dynamics of the HD regulatory subdomain of PARP-1; substrate access and allostery in PARP activation and inhibition. Nucleic Acids Res. 49, 2266–2288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bauer P.I., Buki K.G., Hakam A., Kun E. 1990. Macromolecular association of ADP-ribosyltransferase and its correlation with enzymic activity. Biochem. J. 270, 17–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Eustermann S., Videler H., Yang J.C., Cole P.T., Gruszka D., Veprintse D., Neuhaus D. 2011. The DNA-binding domain of human PARP-1 interacts with DNA single-strand breaks as a monomer through its second zinc finger. J. Mol. Biol. 407, 149–170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Buki K.G., Bauer P.I., Hakam A., Kun E. 1995. Identification of domains of poly(ADP-ribose) polymerase for protein binding and self-association. J. Biol. Chem. 270, 3370–3377.

    Article  CAS  PubMed  Google Scholar 

  93. Vasil’eva I.A., Anarbaev R.O., Moor N.A., Lavrik O.I. 2019. Dynamic light scattering study of base excision DNA repair proteins and their complexes. Biochim. Biophys. Acta 1867, 297–305.

    Article  Google Scholar 

  94. Panzeter P.L., Althaus F.R. 1994. DNA strand break-mediated partitioning of poly(ADP-ribose) polymerase function. Biochemistry. 33, 9600–9605.

    Article  CAS  PubMed  Google Scholar 

  95. Pion E., Ullmann G.M., Amé J.C., Gérard D., de Murcia G., Bombarda E. 2005. DNA-induced dimerization of poly(ADP-ribose) polymerase-1 triggers its activation. Biochemistry. 44, 14670–14681.

    Article  CAS  PubMed  Google Scholar 

  96. Li P., Zhen Y., Yu Y. 2019. Site-specific analysis of the Asp- and Glu-ADP-ribosylated proteome by quantitative mass spectrometry. Methods Enzymol. 626, 301–321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zhang Y., Wang J., Ding M., Yu Y. 2013. Site-specific characterization of the Asp- and Glu-ADP-ribosylated proteome. Nat. Methods. 10, 981–984.

    Article  CAS  PubMed  Google Scholar 

  98. Martello R., Leutert M., Jungmichel S., Bilan V., Larsen S.C., Young C., Hottiger M.O., Nielsen M.L. 2016. Proteome-wide identification of the endogenous ADP-ribosylome of mammalian cells and tissue. Nat. Commun. 7, 12917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Gaullier G., Roberts G., Muthurajan U.M., Bowerman S., Rudolph J., Mahadevan J., Jha A., Rae P.S., Luger K. 2020. Bridging of nucleosome-proximal DNA double-strand breaks by PARP2 enhances its interaction with HPF1. PLoS One. 15, e0240932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Rudolph J., Roberts G., Luger K. 2021. Histone PARylation factor 1 contributes to the inhibition of PARP1 by cancer drugs. Nat. Commun. 12, 736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Bilokapic S., Suskiewicz M.J., Ahel I., Halic M. 2020. Bridging of DNA breaks activates PARP2-HPF1 to modify chromatin. Nature. 585, 609–613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Rudolph J., Roberts G., Muthurajan U.M., Luger K. 2021. HPF1 and nucleosomes mediate a dramatic switch in activity of PARP1 from polymerase to hydrolase. Elife. 10, e65773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Marsischky G.T., Wilson B.A., Collier R.J. 1995. Role of glutamic acid 988 of human poly-ADP-ribose polymerase in polymer formation: Evidence for active site similarities to the ADP-ribosylating toxins. J. Biol. Chem. 270, 3247–3254.

    Article  CAS  PubMed  Google Scholar 

  104. Dodson G., Wlodawer A. 1998. Catalytic triads and their relatives. Trends Biochem. Sci. 23, 347–352.

    Article  CAS  PubMed  Google Scholar 

  105. Kurgina T.A., Moor N.A., Kutuzov M.M., Naumenko K.N., Ukraintsev A.A., Lavrik O.I. 2021. Dual function of HPF1 in the modulation of PARP1 and PARP2 activities. Commun. Biol. 4, 1259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Langelier M.F., Billur R., Sverzhinsky A., Black B.E., Pascal J.M. 2021. HPF1 dynamically controls the PARP1/2 balance between initiating and elongating ADP-ribose modifications. Nat. Commun. 12, 6675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Desmarais Y., Ménard L., Lagueux J., Poirier G.G. 1991. Enzymological properties of poly(ADP-ribose)polymerase: characterization of automodification sites and NADase activity. Biochim. Biophys. Acta. 1078, 179–186.

    Article  CAS  PubMed  Google Scholar 

  108. Mortusewicz O., Amé J.C., Schreiber V., Leonhardt H. 2007. Feedback-regulated poly(ADP-ribosyl)ation by PARP-1 is required for rapid response to DNA damage in living cells. Nucleic Acids Res. 35, 7665–7675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lin X., Jiang W., Rudolph J., Lee B.J., Luger K., Zha S. 2022. PARP inhibitors trap PARP2 and alter the mode of recruitment of PARP2 at DNA damage sites. Nucleic Acids Res. 50, 3958–3973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Crawford K., Bonfiglio J.J., Mikoč A., Matic I., Ahel I. 2018. Specificity of reversible ADP-ribosylation and regulation of cellular processes. Crit. Rev. Biochem. Mol. Biol. 53, 64–82.

    Article  CAS  PubMed  Google Scholar 

  111. Uchida K., Suzuki H., Maruta H., Abe H., Aoki K., Miwa M., Tanuma S.-I. 1993. Preferential degradation of protein-bound (ADP-ribose), by nuclear p-oly(ADP-ribose) glycohydrolase from human placenta. J. Biol. Chem. 268, 3194–3200.

    Article  CAS  PubMed  Google Scholar 

  112. Hendriks I.A., Buch-Larsen S.C., Prokhorova E., Elsborg J.D., Rebak A.K.L.F.S., Zhu K., Ahel D., Lukas C., Ahel I., Nielsen M.L. 2021. The regulatory landscape of the human HPF1- and ARH3-dependent ADP-ribosylome. Nat. Commun. 12, 5893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Sharifi R., Morra R., Appel C.D., Tallis M., Chioza B., Jankevicius G., Simpson M.A., Matic I., Ozkan E., Golia B., Schellenberg M.J., Weston R., Williams J.G., Rossi M.N., Galehdari H., Krahn J., Wan A., T-rembath R.C., Crosby A.H., Ahel D., Hay R., Ladurner A.G., Timinszky G., Williams R.S., Ahel I. 2013. Deficiency of terminal ADP-ribose protein glycohydrolase TARG1/C6orf130 in neurodegenerative disease. EMBO J. 32, 1225–1237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Mashimo M., Kato J., Moss J. 2014. Structure and function of the ARH family of ADP-ribosyl-acceptor hydrolases. DNA Repair. 23, 88–94.

    Article  CAS  PubMed  Google Scholar 

  115. Oka S., Kato J., Moss J. 2006. Identification and characterization of a mammalian 39-kDa poly(ADP-ribose) glycohydrolase. J. Biol. Chem. 281, 705–713.

    Article  CAS  PubMed  Google Scholar 

  116. Fontana P., Bonfiglio J.J., Palazzo L., Bartlett E., Matic I., Ahel I. 2017. Serine ADP-ribosylation reversal by the hydrolase ARH3. Elife. 6, e28533.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Abplanalp J., Leutert M., Frugier E., Nowak K., Feurer R., Kato J., Kistemaker H.V.A., Filippov D.V., Moss J., Caflisch A., Hottiger M.O. 2017. Proteomic analyses identify ARH3 as a serine mono-ADP-ribosylhydrolase. Nat. Commun. 8, 2055.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Slade D., Dunstan M.S., Barkauskaite E., Weston R., Lafite P., Dixon N., Ahel M., Leys D., Ahel I. 2011. The structure and catalytic mechanism of a poly(ADP-ribose) glycohydrolase. Nature. 477, 616–622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Huang H., Lin S., Garcia B.A., Zhao Y. 2015. Quantitative proteomic analysis of histone modifications. Chem. Rev. 115, 2376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Seibert M., Krüger M., Watson N.A., Sen O., Daum J.R., Slotman J.A., Braun T., Houtsmuller A.B., Gorbsky G.J., Jacob R., Kracht M., Higgins J.M.G., Schmitz M.L. 2019. CDK1-mediated phosphorylation at H2B serine 6 is required for mitotic chromosome segregation. J. Cell Biol. 218, 1164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Hendzel M.J., Wei Y., Mancini M.A., van Hooser A., Ranalli T., Brinkley B.R., Bazett-Jones D.P., Allis C.D. 1997. Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma. 106, 348–360.

    Article  CAS  PubMed  Google Scholar 

  122. Hananya N., Daley S.K., Bagert J.D., Muir T.W. 2021. Synthesis of ADP-ribosylated histones reveals site-specific impacts on chromatin structure and function. J. Am. Chem. Soc. 143, 10847–10852.

    Article  CAS  PubMed  Google Scholar 

  123. Sawicka A., Hartl D., Goiser M., Pusch O., Stocsits R.R., Tamir I.M., Mechtler K., Seiser C. 2014. H3S28 phosphorylation is a hallmark of the transcriptional response to cellular stress. Genome Res. 24, 1808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Cheung P., Tanner K.G., Cheung W.L., Sassone-Corsi P., Denu J.M., Allis C.D. 2000. Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation. Mol. Cell. 5, 905–915.

    Article  CAS  PubMed  Google Scholar 

  125. Clayton A.L., Mahadevan L.C. 2003. MAP kinase-mediated phosphoacetylation of histone H3 and inducible gene regulation. FEBS Lett. 546, 51–58.

    Article  CAS  PubMed  Google Scholar 

  126. Simboeck E., Sawicka A., Zupkovitz G., Senese S., Winter S., Dequiedt F., Ogris E., di Croce L., Chiocca S., Seiser C. 2010. A phosphorylation switch regulates the transcriptional activation of cell cycle regulator p21 by histone deacetylase inhibitors. J. Biol. Chem. 285, 41062–41073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Clayton A.L., Mahadevan L.C. 2003. MAP kinase-mediated phosphoacetylation of histone H3 and inducible gene regulation. FEBS Lett. 546, 51–58.

    Article  CAS  PubMed  Google Scholar 

  128. Liszczak G., Diehl K.L., Dann G.P., Muir T.W. 2018. Acetylation blocks DNA damage-induced chromatin ADP-ribosylation. Nat. Chem. Biol. 14, 837–840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Miller K.M., Tjeertes J.V., Coates J., Legube G., Polo S.E., Britton S., Jackson S.P. 2010. Human HDAC1 and HDAC2 function in the DNA-damage response to promote DNA nonhomologous end-joining. Nat. Struct. Mol Biol. 17, 1144–1151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Mao Z., Hine C., Tian X., van Meter M., Au M., Vaidya A., Seluanov A., Gorbunova V. 2011. SIRT6 promotes DNA repair under stress by activating PARP1. Science. 332, 1443–1446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Michishita E., McCord R.A., Berber E., Kioi M., P-adilla-Nashm H., Damian M., Cheung P., Kusumoto R., Kawahara T.L.A., Barrett J.C., Chang H.Y., Bohr V.A., Ried T., Gozani O., Chua K.F. 2008. SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature. 452, 492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Tjeertes J.V., Miller K.M., Jackson S.P. 2009. Screen for DNA-damage-responsive histone modifications identifies H3K9Ac and H3K56Ac in human cells. EMBO J. 28, 1878–1889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Maluchenko N.V., Sultanov D.S., Kotova E.Y., Kirpichnikov M.P., Studitsky V.M., Feofanov A.V. 2019. Histone tails promote PARP1-dependent structural rearrangements in nucleosomes. Dokl. Biochem. Biophys. 489, 377–379.

    Article  CAS  PubMed  Google Scholar 

  134. Maluchenko N.V., Nilov D.K., Pushkarev S.V., Kotova E.Y., Gerasimova N.S., Kirpichnikov M.P., Langelier M.-F., Pascal J.M., Akhtar M.S., Feofanov A.V., Studitsky V.M. 2021. Mechanisms of nucleosome reorganization by PARP1. Int. J. Mol. Sci. 22, 12127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Kotova E.Y., Hsieh F.-K., Chang H.-W., Maluchenko N.V., Langelier M.-F., Pascal J.M., Luse D.S., Feofanov A.V., Studitsky V.M. 2022. Human PARP1 facilitates transcription through a nucleosome and histone displacement by Pol II in vitro. Int. J. Mol. Sci. 23, 7107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to N.I. Rechkunova for fruitful discussion of the review.

Funding

This work was supported by the Russian Science Foundation (project no. 22-14-00112) and a state contract with the Institute of Chemical Biology and Fundamental Medicine (no. 121031300041-4, part “Several Aspects of the Roles of PARP1 and PARP2 in the Cell”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. I. Lavrik.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human subjects performed by any of the authors.

Additional information

Translated by T. Tkacheva

Abbreviations: ARH3, ADP-ribosylhydrolase 3; ART, ADP-ribosyltransferase; BER, base excision repair; HDAC, histone deacetylase; HPF1, histone PARylation factor 1; MAR, mono(ADP-ribose); MARylation, mono(ADP-ribosyl)ation; MSK1/2, mitogen- and stress-activated protein kinase 1/2; PARP1/2, poly(ADP-ribose)polymerase 1/2; PARG, poly(ADP-ribose)glycohydrolase; Polβ, DNA polymerase β; PAR, poly(ADP-ribose); PARylation, poly(ADP-rybosyl)ation; XRCC1, X-ray repair cross-complementing protein 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurgina, T.A., Lavrik, O.I. Poly(ADP-Ribose) Polymerases 1 and 2: Classical Functions and Interaction with New Histone Poly(ADP-Ribosyl)ation Factor HPF1. Mol Biol 57, 245–257 (2023). https://doi.org/10.1134/S0026893323020140

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893323020140

Keywords:

Navigation