Skip to main content
Log in

miR-485-3p and miR-4728-5p as Tumor Suppressors in Pathogenesis of Colorectal Cancer

  • BIOINFORMATICS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are a class of small noncoding RNAs that have major functions in the development and progression of colorectal cancer (CRC) as tumor suppressors or oncogenes. The aim of the current research was to assess the role of miR-485-3p and miR-4728-5p in the pathogenesis of CRC. In this study, fresh tumor and adjacent non-tumor tissue samples were obtained from a total of 59 CRC patients, 37 from colon and 22 from rectum. The expression profiles of miR-485-3p and miR-4728-5p were determined using qRT-PCR. miRNA-related transcription factor (TF) regulatory networks were constructed using the TransmiR v2.0, TF-regulated target genes were determined using the Human.mirFFL.DB and TRRUST v2.0, functional annotation and pathway enrichment analyses were performed using DIANA-mirPath v3.0 and -Tarbase v7.0. The results demonstrated that the expression levels of both miR-485-3p and miR-4728-5p were very significantly downregulated in CRC tissues (fold changes = 0.42 ± 0.70 and 0.59 ± 1.06, respectively; both p = 0.000). On the other hand, lower expression levels of miR-485-3p were detected in the both rectum and colon. Moreover, the decrease in the expression levels of miR-4728-5p was correlated with increasing age. However, these differences were not statistically significant according to the FDR-related p‑values (0.126 and 0.168, respectively). By bioinformatics analyses, miR-485-3p and miR-4728-5p-related TFs were identified. Some of these TFs, namely, AR, CREB1, CEBPB, FOXA1, GTF2I, MAZ, NCOR2, NFIC, NRF1, SIN3A, SREBF1, SREBF2, p53 and YY1, appeared to be associated with CRC and were, therefore, selected to construct miRNA‒TF-gene networks of potential targets for the early diagnosis and treatment of CRC. Pathway enrichment analysis indicated Hippo signaling pathway as heavily regulated by miR-485-3p. It seems that the decrease in expression levels of miR-485-3p and miR-4728-5p might be associated with development of colorectal cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Global Cancer Observatory (Globocan), International Agency for Research on Cancer. 2020. https://gco.iarc.fr.

  2. Rabeneck L., Chiu H.M., Senore C. 2020. International perspective on the burden of colorectal cancer and public health effects. Gastroenterology. 158 (2), 447–452.

    Article  PubMed  Google Scholar 

  3. Siegel R.L., Miller K.D., Goding Sauer A., Fedewa S.A., Butterly L.F., Anderson J.C., Cercek A., Smith R.A., Jemal A. 2020. Colorectal cancer statistics, 2020. CA Cancer J. Clin. 70, 145–164. https://doi.org/10.3322/caac.21601

    Article  PubMed  Google Scholar 

  4. Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. 2021. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71 (3), 209‒249.https://doi.org/10.3322/caac.21660

    Article  PubMed  Google Scholar 

  5. Li J., Guo C., Lu X., Tan W. 2019. Anti-colorectal cancer biotargets and biological mechanisms of puerarin: Study of molecular networks. Eur. J. Pharmacol. 858, 172483. https://doi.org/10.1016/j.ejphar.2019.172483

    Article  CAS  PubMed  Google Scholar 

  6. Lv Y., Duanmu J., Fu X., Li T., Jiang Q. 2020. Identifying a new microRNA signature as a prognostic biomarker in colon cancer. PLoS One. 15 (2), e0228575.https://doi.org/10.1371/journal.pone.0228575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yang J., Ma D., Fesler A., Zhai H., Leamniramit A., Li W., Wu S., Ju J. 2017. Expression analysis of microRNA as prognostic biomarkers in colorectal cancer. Oncotarget. 8 (32), 52403.

    Article  PubMed  Google Scholar 

  8. Balacescu O., Sur D., Cainap C., Visan S., Cruceriu D., Manzat-Saplacan R., Muresan I.S., Balacescu L., Lisencu C., Irimie A. 2018. The impact of miRNA in colorectal cancer progression and its liver metastases. Int. J. Mol. Sci. 19 (12), 3711.

    Article  PubMed Central  CAS  Google Scholar 

  9. Tang X.J., Wang W., Hann S. 2019. Interactions among lncRNAs, miRNAs and mRNA in colorectal cancer. Biochimie. 163, 58–72.

    Article  CAS  PubMed  Google Scholar 

  10. Wu F., Xing T., Gao X., Liu F. 2019. miR-501-3p promotes colorectal cancer progression via activation of Wnt/β-catenin signaling. Int. J. Oncol. 55 (3), 671–683.

    PubMed  PubMed Central  Google Scholar 

  11. Motoyama K., Inoue H., Takatsuno Y., Tanaka F., Mimori K., Uetake H., Sugihara K., Mori, M. 2009. Over-and under-expressed microRNAs in human colorectal cancer. Int. J. Oncol. 34 (4), 1069–1075.

    CAS  PubMed  Google Scholar 

  12. Feng B., Dong T.T., Wang L.L., Zhou H.M., Zhao H.C., Dong F., Zheng M.H. 2012. Colorectal cancer migration and invasion initiated by microRNA-106a. PloS One. 7 (8), e43452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nishida N., Yamashita S., Mimori K., Sudo T., Tanaka F., Shibata K., Yamamoto H., Ishii H., Doki Y., Mori M. 2012. MicroRNA-10b is a prognostic indicator in colorectal cancer and confers resistance to the chemotherapeutic agent 5-fluorouracil in colorectal cancer cells. Ann. Surg. Oncol. 19 (9), 3065–3071.

    Article  PubMed  Google Scholar 

  14. Yu Y., Kanwar S.S., Patel B.B., Oh P.S., Nautiyal J., Sarkar F.H., Majumdar A.P. 2012. MicroRNA-21 induces stemness by downregulating transforming growth factor beta receptor 2 (TGFβR2) in colon cancer cells. Carcinogenesis. 33 (1), 68–76.

    Article  PubMed  CAS  Google Scholar 

  15. Weissmann-Brenner A., Kushnir M., Lithwick Yanai G., Aharonov R., Gibori H., Purim O., Kundel Y., Morgenstern S., Halperin M., Niv Y., Brenner B. 2012. Tumor microRNA-29a expression and the risk of recurrence in stage II colon cancer. Int. J. Oncol. 40 (6), 2097–2103.

    CAS  PubMed  Google Scholar 

  16. Hwang W.L., Jiang J.K., Yang S.H., Huang T.S., Lan H.Y., Teng H.W., Yang C.Y., Tsai Y.P., Lin C.H., Wang H.W., Yang M.H. 2014. MicroRNA-146a directs the symmetric division of Snail-dominant colorectal cancer stem cells. Nat. Cell Biol. 16 (3), 268–280.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang W., Zhang T., Jin R., Zhao H., Hu J., Feng, B., Zang L., Zheng M., Wang M. 2014. MicroRNA-301a promotes migration and invasion by targeting TGFBR2 in human colorectal cancer. J. Exp. Clin. Cancer Res. 33 (1), 113.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Xiao G., Tang H., Wei W., Li J., Ji L., Ge J. 2014. Aberrant expression of microRNA-15a and microRNA-16 synergistically associates with tumor progression and prognosis in patients with colorectal cancer. Gastroenterol. Res. Prac. 2014, 364549. https://doi.org/10.1155/2014/364549

  19. Li T., Lai Q., Wang S., Cai J., Xiao Z., Deng D., He L., Jiao H., Ye Y., Liang L., Ding Y., Liao W. 2016. MicroRNA-224 sustains Wnt/β-catenin signaling and promotes aggressive phenotype of colorectal cancer. J. Exp. Clin. Cancer Res. 35, 21. https://doi.org/10.1186/s13046-016-0287-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zekri A.R.N., Youssef A.S.E.D., Lotfy M.M., Gabr R., Ahmed O.S., Nassar A., Hussein N., Omran D., Medhat E., Eid S., Hussein, M.M., Ismail M.Y., Alenzi F.Q., Bahnassy A.A. 2016. Circulating serum miRNAs as diagnostic markers for colorectal cancer. PloS One. 11 (5), e0154130.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Baltruskeviciene E., Schveigert D., Stankevicius V., Mickys U., Zvirblis T., Bublevic J., Suziedelis K., Aleknavicius E. 2017. Down-regulation of miRNA-148a and miRNA-625-3p in colorectal cancer is associated with tumor budding. BMC Cancer. 17 (1), 607.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Danese E., Minicozzi A.M., Benati M., Paviati E., Lima-Oliveira G., Gusella M., Pasini F., Salvagno G.L., Montagnana M., Lippi G. 2017. Reference miRNAs for colorectal cancer: analysis and verification of current data. Sci. Rep. 7 (1), 8413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yamazaki N., Koga Y., Taniguchi H., Kojima M., Kanemitsu Y., Saito N., Matsumura Y. 2017. High expression of miR-181c as a predictive marker of recurrence in stage II colorectal cancer. Oncotarget. 8 (4), 6970.

    Article  PubMed  Google Scholar 

  24. Zhang Y., Guo L., Li Y., Feng G.H., Teng F., Li W., Zhou Q. 2018. MicroRNA-494 promotes cancer progression and targets adenomatous polyposis coli in colorectal cancer. Mol. Cancer. 17 (1), 1–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Ashizawa M., Okayama H., Ishigame T., Min A.K.T., Saito K., Ujiie D., Murakami Y., Kikuchi T., Nakayama Y., Noda M., Tada T., Endo H., Fujita S., Sakamoto W., Saito M., et al. 2019. miRNA-148a-3p Regulates immunosuppression in DNA mismatch repair–deficient colorectal cancer by targeting PD-L1. Mol. Cancer Res. 17 (6), 1403–1413.

    CAS  PubMed  Google Scholar 

  26. Du K., Zhang X., Lou Z., Guo P., Zhang F., Wang B., Chen L., Zhang C. 2018. MicroRNA485-3p negatively regulates the transcriptional co-repressor CtBP1 to control the oncogenic process in osteosarcoma cells. Int. J. Biol. Sci. 14 (11), 1445–1456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yang H., Cho M.E., Li T.W., Peng H., Ko K.S., Mato J.M., Lu S.C. 2013. MicroRNAs regulate the expression of methionine adenosyltransferase 1A in hepatocellular carcinoma. J. Clin. Res. 123 (1), 285–298.

    CAS  Google Scholar 

  28. Wang Z.Q., Zhang M.Y., Deng M.L., Weng N.Q., Wang H.Y., Wu S.X. 2017. Low serum level of miR-485-3p predicts poor survival in patients with glioblastoma. PLoS One. 12 (9), e0184969.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Formosa A., Markert E.K., Lena A.M., Italiano D., Finazzi-Agro E., Levine A.J., Bernardini S., Garabadgiu A.V., Melino G., Candi E. 2014. MicroRNAs, miR-154, miR-299-5p, miR-376a, miR-376c, miR-377, miR-381, miR-487b, miR-485-3p, miR-495 and miR-654-3p, mapped to the 14q32. 31 locus, regulate proliferation, apoptosis, migration and invasion in metastatic prostate cancer cells. Oncogene. 33 (44), 5173–5182.

    Article  CAS  PubMed  Google Scholar 

  30. Wang J., Zhang H., Zhou X., Wang T., Zhang J.Y., Zhu W., Zhu H., Cheng W. 2018. Five serum-based miRNAs were identified as potential diagnostic biomarkers in gastric cardia adenocarcinoma. Cancer Biomark. 23 (2), 193–203.

    Article  CAS  PubMed  Google Scholar 

  31. Lou C., Xiao M., Cheng S., Lu X., Jia S., Ren Y., Li Z. 2016. MiR-485-3p and miR-485-5p suppress breast cancer cell metastasis by inhibiting PGC-1 α expression. Cell Deat Dis. 7 (3), e2159.

    Article  CAS  Google Scholar 

  32. Mizuno K., Mataki H., Arai T., Okato A., Kamikawaji K., Kumamoto T., Hiraki T., Hatanaka K., Inoue H., Seki N. 2017. The microRNA expression signature of small cell lung cancer: tumor suppressors of miR-27a-5p and miR-34b-3p and their targeted oncogenes. J. Hum. Genet. 62 (7), 671–678.

    Article  CAS  PubMed  Google Scholar 

  33. Zhao Z., Gao D., Ma T., Zhang L. 2019. MicroRNA-141 suppresses growth and metastatic potential of head and neck squamous cell carcinoma. Aging. 11 (3), 921–932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li H., Zhou X., Zhu J., Cheng W., Zhu W., Shu Y., Liu P. 2015. MiR-4728-3p could act as a marker of HER2 status. Cancer Biomarkers. 15 (6), 807–814.

    Article  CAS  PubMed  Google Scholar 

  35. Schmitt D.C., Madeira da Silva L., Zhang W., Liu Z., Arora R., Lim S., Schuler A.M., McClellan S., Andrews J.F., Kahn A.G., Zhou M., Ahn E.Y., Tan M. 2015. ErbB2-intronic microRNA-4728: a novel tumor suppressor and antagonist of oncogenic MAPK signaling. Cell Death Dis. 6 (5), e1742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jiashi W., Chuang Q., Zhenjun Z., Guangbin W., Bin L., Ming H. 2018. MicroRNA-506-3p inhibits osteosarcoma cell proliferation and metastasis by suppressing RAB3D expression. Aging. 10 (6), 1924–1305.

    Article  Google Scholar 

  37. Livak K.J., Schmittgen T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 25 (4), 402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  38. Benjamini Y., Hochberg Y. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Statist. Soc. B. Methodol. 57 (1), 289‒300.

    Google Scholar 

  39. TransmiR v. 2.0 Database. http://www.cuilab.cn/transmir.

  40. Tong Z., Cui Q., Wang J., Zhou Y. 2019. TransmiR v2.0: an updated transcription factor-microRNA regulation database. Nucleic Acids Res. 8 (47), D253‒D258.

    Article  CAS  Google Scholar 

  41. Human.mirFFL.DB. http://www.mirffldb.in/human/

  42. TRRUST v2.0 (Transcriptional Regulatory Relationships Unraveled by Sentence-based Text-mining). https://www.grnpedia.org/trrust/

  43. The Human Protein Atlas. https://www.proteinatlas.org

  44. DIANA-mirPath v. 3.0. http://www.microrna.gr/miRPathv2

  45. DIANA-TarBase v. 7.0. http://www.microrna.gr/tarbase

  46. Vlachos I.S., Zagganas K., Paraskevopoulou M.D., Georgakilas G., Karagkouni D., Vergoulis T., Dalamagas T., Hatzigeorgiou A.G. 2015. DIANA-miRPath v. 3.0: Deciphering microRNA function with experimental support. Nucleic Acids Res. 43 (W1), W460‒W466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. KEGG Pathway Database. https://www.genome.jp/ kegg/pathway.html

  48. Hao S., Huo S., Du Z., Yang Q., Ren M., Liu S., Liu T., Zhang G. 2019. MicroRNA-related transcription factor regulatory networks in human colorectal cancer. Medicine. 98 (15), e15158. https://doi.org/10.1097/MD.0000000000015158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Huang H.Y., Lin Y.C.D., Li J., Huang K.Y., Shrestha S., Hong H.C., Tang Y., Chen Y.G., Jin C.N., Yu Y., Xu J.T., Li Y.M., Cai X.X., Zhou Z.Y., Chen X.H., et al. 2020. miRTarBase 2020: updates to the experimentally validated microRNA–target interaction database. Nucleic Acids Res. 48 (D1), D148–D154.

    CAS  PubMed  Google Scholar 

  50. Wang H., Wang N., Zheng X., Wu L., Fan C., Li X., Fan C., Li X., Ye K., Han S. 2021. Circular RNA hsa_circ_0009172 suppresses gastric cancer by regulation of microRNA-485-3p-mediated NTRK3. Cancer Gene Ther. 28 (12), 1312‒1324.

    Article  CAS  PubMed  Google Scholar 

  51. Chiang Y., Song Y., Wang Z., Liu Z., Gao P., Liang J., Zhu J., Xing C., Xu H. 2012. microRNA-192-194 and ‑215 are frequently downregulated in colorectal cancer. Exp. Ther. Med. 3 (3), 560–566.

    Article  CAS  PubMed  Google Scholar 

  52. Zhang Y., Sui R., Chen Y., Liang H., Shi J., Piao H. 2019. Downregulation of miR-485-3p promotes glioblastoma cell proliferation and migration via targeting RNF135. Exp. Ther. Med. 18 (1), 475–482.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Han D.L., Wang L.L., Zhang G.F., Yang W.F., Chai J., Lin H.M., Fu Z., Yu J.M. 2019. MiRNA-485-5p, inhibits esophageal cancer cells proliferation and invasion by down-regulating O-linked N-acetylglucosamine transferase. Eur. Rev. Med. Pharmacol. Sci. 23 (7), 2809–2816.

    PubMed  Google Scholar 

  54. Chen Z., Li Q., Wang S., Zhang J. 2015. miR-485-5p inhibits bladder cancer metastasis by targeting HMGA2. Int. J. Mol. Med. 36 (4), 1136–1142.

    Article  CAS  PubMed  Google Scholar 

  55. Taherdangkoo K., Nezhad, S.K., Hajjari M.R., Birgani M.T. 2020. MiR-485-3p suppresses colorectal cancer via targeting TPX2. Bratisl. Lek. Listy121 (4), 302–307.

    CAS  PubMed  Google Scholar 

  56. Chen C.F., He X., Arslan A.D., Mo Y.Y., Reinhold W.C., Pommier Y., Beck W.T. 2011. Novel regulation of nuclear factor-YB by miR-485-3p affects the expression of DNA topoisomerase IIα and drug responsiveness. Mol. Pharmacol. 79 (4), 735–741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yao X., Cui X., Wu X., Xu P., Zhu W., Chen X., Zhao T. 2018. Tumor suppressive role of miR-1224-5p in keloid proliferation, apoptosis and invasion via the TGF-b1/Smad3 signaling pathway. Biochem. Biophys. Res. Commun. 495, 713–720.

    Article  CAS  PubMed  Google Scholar 

  58. Zhou Y., Yuan Y., Li L., Wang X., Quan Y., Liu C., Yu M., Hu X., Meng X., Zhou Z., Zhang C.Y., Chen X., Liu M., Wang C. (2021). HER2-intronic miR-4728-5p facilitates HER2 expression and accelerates cell proliferation and migration by targeting EBP1 in breast cancer. PloS One. 16 (2), e0245832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ghodssi-Ghassemabadi R., Hajizadeh E., Kamian S., Mahmoudi M. 2019. Clinicopathological features and survival of colorectal cancer patients younger than 50 years: a retrospective comparative study. J. Egypt. Natl. Cancer Inst. 31 (1), 6. https://doi.org/10.1186/s43046-019-0006-z

    Article  Google Scholar 

  60. Sun M., Song H., Wang S., Zhang C., Zheng L., Chen F., Shi D., Chen Y., Yang C., Xiang Z., Liu Q., Wei C., Xiong B. 2017. Integrated analysis identifies microRNA-195 as a suppressor of Hippo-YAP pathway in colorectal cancer. J. Hematol. Oncol. 10 (1), 79. https://doi.org/10.1186/s13045-017-0445-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Qu R., Hao S., Jin X., Shi G., Yu Q., Tong X., Guo D. 2018. MicroRNA-374b reduces the proliferation and invasion of colon cancer cells by regulation of LRH-1/Wnt signaling. Gene. 642, 354–361.

    Article  CAS  PubMed  Google Scholar 

  62. Zhang J., Zhang K., Bi M., Jiao X., Zhang D., Dong Q. 2014. Circulating microRNA expressions in colorectal cancer as predictors of response to chemotherapy. Anti-Cancer Drugs. 25 (3), 346–352.

    Article  CAS  PubMed  Google Scholar 

  63. Poel D., Gootjes E.C., Bakkerus L., Trypsteen W., Dekker H., van der Vliet H.J., van Grieken N.C.T, Verhoef C., Buffart T.E., Verheul H.M. 2020. A specific microRNA profile as predictive biomarker for systemic treatment in patients with metastatic colorectal cancer. Cancer Med. 9 (20), 7558–7571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wang Y., Xu X., Maglic D., Dill M.T., Mojumdar K., Ng P.K.S., Jeong K.J., Tsang Y.H., Moreno D., Bhavana V.H., Peng X., Ge Z., Chen H., Li J., Chen Z., Zhang H., et al. 2018. Comprehensive molecular characterization of the Hippo signaling pathway in cancer. Cell Rep. 25 (5), 1304–1317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Triner D., Castillo C., Hakim J.B., Xue X., Greenson J.K., Nuñez G., Chen G.Y., Colacino J.A., Shah Y.M. 2018. Myc-associated zinc finger protein regulates the proinflammatory response in colitis and colon cancer via STAT3 signaling. Am. Soc. Microbiol. Mol. Cell. Biol. 38 (22), e00386‒18. https://doi.org/10.1128/MCB.00386-18

    Article  CAS  Google Scholar 

  66. Ye Q., Su L., Chen D., Zheng W., Liu Y. 2017. Astragaloside IV induced miR-134 expression reduces EMT and increases chemotherapeutic sensitivity by suppressing CREB1 signaling in colorectal cancer cell line SW-480. Cell Physiol. Biochem. 43, 1617–1626.

    Article  CAS  PubMed  Google Scholar 

  67. Ramos A., Camargo F.D. 2012. The Hippo signaling pathway and stem cell biology. Trends Cell Biol. 22 (7), 339–346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhou G.X., Li X.Y., Zhang Q., Zhao K., Zhang C.P., Xue C.H., Yang K., Tian Z.B. 2013. Effects of the Hippo signaling pathway in human gastric cancer. Asian Pacific J. Cancer Prev. 14 (9), 5199–5205.

    Article  Google Scholar 

  69. Hong A.W., Meng Z., Guan K.L. 2016. The Hippo pathway in intestinal regeneration and disease. Nat. Rev. Gastroenterol. Hepatol. 13, 324–337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Liu Y., Wang G., Yang Y., Mei Z., Liang Z., Cui A., Wu T., Liu C.Y., Cui L. 2016. Increased TEAD4 expression and nuclear localization in colorectal cancer promote epithelial-mesenchymal transition and metastasis in a YAP-independent manner. Oncogene. 35, 2789–2800.

    Article  CAS  PubMed  Google Scholar 

  71. Richter J., Ullah K., Xu P., Alscher V., Blatz A., Peifer C., Halekotte J., Leban J., Vitt D., Holzmann K., Bakulev V., Pinna L.A., Henne-Bruns D., Hillenbrand A., Kornmann M., et al. 2015. Effects of altered expression and activity levels of CK1d and E on tumor growth and survival of colorectal cancer patients. Int. J. Cancer. 136, 2799–2810.

    Article  CAS  PubMed  Google Scholar 

  72. Hardy K.M., Booth B.W., Hendrix M.J., Salomon D.S., Strizzi L. 2010. ErbB/EGF signaling and EMT in mammary development and breast cancer. J. Mammary Gland Biol. Neoplasia. 15 (2), 191–199.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Catto J.W., Alcaraz A., Bjartell A.S., White R.D.V., Evans C.P., Fussel S., Hamdy F.C., Kallioniemi O., Mengual L., Schlomm T., Visakorpi T. 2011. MicroRNA in prostate, bladder, and kidney cancer: a systematic review. Eur. Urol. 59 (5), 671–681.

    Article  CAS  PubMed  Google Scholar 

  74. Harb J., Lin P.J., Hao J. 2019. Recent development of Wnt signaling pathway inhibitors for cancer therapeutics. Curr. Oncol. Rep. 21 (2), 12.

    Article  PubMed  Google Scholar 

  75. Rahmani F., Ferns G.A., Talebian S., Nourbakhsh M., Avan A., Shahidsales S. 2020. Role of regulatory miRNAs of the PI3K/AKT signaling pathway in the pathogenesis of breast cancer. Gene. 737, 144459.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was financially supported by the Scientific Research Projects Managements Unit of Gaziantep University (Grant no. FEF.YLT.19.20).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Gurer.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement of compliance with standards of research involving humans as subjects. The study was approved by the local ethics committee of Gaziantep University, Turkey (no. 2018/352) and performed in accordance with the Declaration of Helsinki. All participants have signed the informed consent to participate in this research, before starting the research procedures.

ADDITIONAL INFORMATION

The text was submitted by the author(s) in English.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gurer, T., Aytekin, A., Caki, E. et al. miR-485-3p and miR-4728-5p as Tumor Suppressors in Pathogenesis of Colorectal Cancer. Mol Biol 56, 474–488 (2022). https://doi.org/10.1134/S0026893322030062

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893322030062

Keywords:

Navigation