Skip to main content
Log in

STRUCTURE AND COMPOSITION OF [(nacnac)MnCl]2 (nacnac = HC(C(Me)N(2.6-i-Pr2C6H3))2) PRODUCTS REDUCED BY POTASSIUM-INTERCALATED GRAPHITE IN TOLUENE AND BENZENE

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The reduction of [(nacnac)MnCl]2 (1) (nacnac = HC(C(Me)N(2.6-i-Pr2C6H3))2) by potassium intercalated graphite KC8 in toluene and benzene is studied. It is established that in both cases, Mn(II) reduces to Mn(I), giving [(nacnac)Mn]2 dimer (2) with the Mn–Mn bond. In addition, solvent interaction products form. In the first case, the product of toluene meta-deprotonation [(nacnac)Mn(m-C6H4CH3)] (3) forms; in the second, the product of benzene reduction [{Mn(nacnac)}2(μ–η44-C6H6)] C6H6 (4) forms. The structures of complexes 3 and 4 are determined by single crystal X-ray diffraction (XRD). A set of crystalline reaction products and their ratio is determined by quantitative powder XRD using the Rietveld method: in the case of toluene, 2, 3, and [(nacnac)MnH]2 are in a 1:1:4 ratio; in the case of benzene, 2, 4·C6H6, and 1 are in a 3:8.5:1 ratio, and also trace amounts of a crystalline phase with an unknown structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. R. L. Webster. Dalton Trans., 2017, 46, 4483-4498. https://doi.org/10.1039/C7DT00319F

    Article  CAS  PubMed  Google Scholar 

  2. S. F. McWilliams, D. L. J. Broere, C. J. V. Halliday, S. M. Bhutto, B. Q. Mercado, and P. L. Holland. Nature, 2020, 584, 221-226. https://doi.org/10.1038/s41586-020-2565-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. I. Fairlamb and J. Lynam. Organometallic Chemistry, Vol. 39. Cambridge, UK: The Royal Society of Chemistry, 2014. https://doi.org/10.1039/9781849737692

  4. S. Hohloch, B. M. Kriegel, R. G. Bergman, and J. Arnold. Dalton Trans., 2016, 45, 15725-15745. https://doi.org/

  5. .1039/B715027J

  6. J. M. Smith, A. R. Sadique, T. R. Cundari, K. R. Rodgers, G. Lukat-Rodgers, R. J. Lachicotte, C. J. Flaschenriem,J. Vela, and P. L. Holland. J. Am. Chem. Soc., 2006, 128, 756-769. https://doi.org/10.1021/ja052707x

    Article  CAS  Google Scholar 

  7. W. H. Monillas, G. P. A. Yap, and K. H. Theopold. Angew. Chem., Int. Ed., 2007, 46, 6692-6694. https://doi.org/

  8. Y.-C. Tsai, P.-Y. Wang, K.-M. Lin, S.-A. Chen, and J.-M. Chen. Chem. Commun., 2008, 205-207. https://doi.org/

  9. Y.-C. Tsai, P.-Y. Wang, S.-A. Chen, and J.-M. Chen. J. Am. Chem. Soc., 2007, 129, 8066/8067. https://doi.org/

  10. D. J. E. Spencer, N. W. Aboelella, A. M. Reynolds, P. L. Holland, and W. B. Tolman. J. Am. Chem. Soc., 2002, 124, 2108/2109. https://doi.org/10.1021/ja017820b

    Article  CAS  PubMed  Google Scholar 

  11. K.-C. Chang, C.-F. Lu, P.-Y. Wang, D.-Y. Lu, H.-Z. Chen, T.-S. Kuo, and Y.-C. Tsai. Dalton Trans., 2011, 40, 2324-2331. https://doi.org/10.1039/C0DT01061H

    Article  CAS  PubMed  Google Scholar 

  12. J. Chai, H. Zhu, A. C. Stückl, H. W. Roesky, J. Magull, A. Bencini, A. Caneschi, and D. Gatteschi. J. Am. Chem. Soc., 2005, 127, 9201-9206. https://doi.org/10.1021/ja042269e

    Article  CAS  PubMed  Google Scholar 

  13. Y. Wang, B. Quillian, P. Wei, H. Wang, X.-J. Yang, Y. Xie, R. B. King, P.v.R. Schleyer, H. F. Schaefer, andG. H. Robinson. J. Am. Chem. Soc., 2005, 127, 11944/11945. https://doi.org/10.1021/ja053819r

    Article  CAS  PubMed  Google Scholar 

  14. D. J. Webb, C. M. Fitchett, M. Lein, and J. R. Fulton. Chem. Commun., 2018, 54, 460-462. https://doi.org/

  15. F. Spitzer, C. Graßl, G. Balázs, E. M. Zolnhofer, K. Meyer, and M. Scheer. Angew. Chem., Int. Ed., 2016, 55, 4340-4344. https://doi.org/10.1002/anie.201510716

    Article  CAS  Google Scholar 

  16. F. Spitzer, C. Graßl, G. Balázs, E. Mädl, M. Keilwerth, E. M. Zolnhofer, K. Meyer, and M. Scheer. Chem. – Eur. J., 2017, 23, 2716-2721. https://doi.org/10.1002/chem.201605451

    Article  CAS  PubMed  Google Scholar 

  17. D. M. Roundhill. Photochemistry and Photophysics of Metal Complexes. Boston, MA: Springer, 1994. https://doi.org/10.1007/978-1-4899-1495-8

  18. T. K. Mukhopadhyay, M. Flores, T. L. Groy, and R. J. Trovitch. Chem. Sci., 2018, 9, 7673-7680. https://doi.org/

  19. T. T. Nguyen, J.-H. Kim, S. Kim, C. Oh, M. Flores, T. L. Groy, M.-H. Baik, and R. J. Trovitch. Chem. Commun., 2020, 56, 3959-3962. https://doi.org/10.1039/C9CC09921B

    Article  CAS  Google Scholar 

  20. Apex3 software suite: Apex3, SADABS-2016/2 and SAINT, version 2018.7-2. Madison, WI: Bruker AXS Inc., 2017.

  21. G. M. Sheldrick. Acta Crystallogr., Sect. A: Found. Adv., 2015, 71, 3-8. https://doi.org/10.1107/S2053273314026370

    Article  Google Scholar 

  22. G. M. Sheldrick. Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71, 3-8. https://doi.org/10.1107/S2053229614024218

    Article  Google Scholar 

  23. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann. J. Appl. Crystallogr., 2009, 42, 339-341. https://doi.org/10.1107/S0021889808042726

    Article  CAS  Google Scholar 

  24. A. V. Alexeev and S. A. Gromilov. J. Struct. Chem., 2010, 51(4), 744-757. https://doi.org/10.1007/s10947-010-0110-3

    Article  CAS  Google Scholar 

  25. A. V. Alexeev and S. A. Gromilov. J. Struct. Chem., 2010, 51(1), 156-165. https://doi.org/10.1007/s10947-010-0022-2

    Article  CAS  Google Scholar 

  26. C. Prescher and V. B. Prakapenka. High Press. Res., 2015, 35, 223-230. https://doi.org/10.1080/08957959.

  27. .1059835

  28. J. Chai, H. Zhu, H. Fan, H. W. Roesky, and J. Magull. Organometallics, 2004, 23, 1177-1179. https://doi.org/

  29. D. R. Armstrong, J. García-Álvarez, D. V. Graham, G. W. Honeyman, E. Hevia, A. R. Kennedy, and R. E. Mulvey. Chem. – Eur. J., 2009, 15, 3800-3807. https://doi.org/10.1002/chem.200801928

    Article  CAS  PubMed  Google Scholar 

  30. L. Dahlenburg and K.-M. Frosin. Chem. Ber., 1988, 121, 865-869. https://doi.org/10.1002/cber.19881210509

    Article  CAS  Google Scholar 

  31. M.A. Esteruelas, M. Oliván, A. Vélez. Organometallics, 2015, 34, 1911–1924. https://doi.org/10.1021/

  32. E. Nicolas, X.-F. le Goff, S. Bouchonnet, and N. Mézailles. Chem. Commun., 2012, 48, 8350. https://doi.org/

  33. D. D. L. Jones, I. Douair, L. Maron, and C. Jones. Angew. Chem., Int. Ed., 2021, 60, 7087-7092. https://doi.org/

  34. C. Ni, B. D. Ellis, J. C. Fettinger, G. J. Long, and P. P. Power. Chem. Commun., 2008, 1014-1016. https://doi.org/

  35. F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen, and R. Taylor. J. Chem. Soc. Perkin Trans. 2, 1987, S1. https://doi.org/10.1039/p298700000s1

    Article  Google Scholar 

  36. S. Yao, T. Szilvási, N. Lindenmaier, Y. Xiong, S. Inoue, M. Adelhardt, J. Sutter, K. Meyer, and M. Driess. Chem. Commun., 2015, 51, 6153-6156. https://doi.org/10.1039/C5CC00147A

    Article  CAS  Google Scholar 

  37. X. Dai, P. Kapoor, and T. H. Warren. J. Am. Chem. Soc., 2004, 126, 4798/4799. https://doi.org/10.1021/

  38. A. Hicken, A. J. P. White, and M. R. Crimmin. Inorg. Chem., 2017, 56, 8669-8682. https://doi.org/10.1021/

  39. Y. M. Badiei, A. Dinescu, X. Dai, R. M. Palomino, F. W. Heinemann, T. R. Cundari, and T. H. Warren. Angew. Chem., Int. Ed., 2008, 47, 9961-9964. https://doi.org/10.1002/anie.200804304

    Article  CAS  Google Scholar 

  40. A. D. Phillips, G. Laurenczy, R. Scopelliti, and P. J. Dyson. Organometallics, 2007, 26, 1120-1122. https://doi.org/10.1021/om070017r

    Article  CAS  Google Scholar 

  41. A. Moreno, P. S. Pregosin, G. Laurenczy, A. D. Phillips, and P. J. Dyson. Organometallics, 2009, 28, 6432-6441. https://doi.org/10.1021/om900634s

    Article  CAS  Google Scholar 

  42. P. H. M. Budzelaar, N. N. P. Moonen, R. de Gelder, J. M. M. Smits, and A. W. Gal. Chem. – Eur. J., 2000, 6, 2740-2747. https://doi.org/10.1002/1521-3765(20000804)6:15%3C2740::AID-CHEM2740%3E3.0.CO;2-0

    Article  CAS  PubMed  Google Scholar 

  43. T. L. Gianetti, G. Nocton, S. G. Minasian, N. C. Tomson, A. L. D. Kilcoyne, S. A. Kozimor, D. K. Shuh, T. Tyliszczak, R. G. Bergman, and J. Arnold. J. Am. Chem. Soc., 2013, 135, 3224-3236. https://doi.org/10.1021/ja311966h

    Article  CAS  PubMed  Google Scholar 

  44. G. Bai, P. Wei, and D. W. Stephan. Organometallics, 2005, 24, 5901-5908. https://doi.org/10.1021/om050544f

    Article  CAS  Google Scholar 

  45. C. M. Kotyk, M. E. Fieser, C. T. Palumbo, J. W. Ziller, L. E. Darago, J. R. Long, F. Furche, and W. J. Evans. Chem. Sci., 2015, 6, 7267-7273. https://doi.org/10.1039/C5SC02486B

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. N. Reinfandt, N. Michenfelder, C. Schoo, R. Yadav, S. Reichl, S. N. Konchenko, A. N. Unterreiner, M. Scheer, and P. W. Roesky. Chem. – Eur. J., 2021, 27, 7862-7871. https://doi.org/10.1002/chem.202100605

    Article  CAS  PubMed  Google Scholar 

  47. Y.-Z. Ma, N. A. Pushkarevsky, T. S. Sukhikh, A. E. Galashov, A. G. Makarov, P. W. Roesky, and S. N. Konchenko. Eur. J. Inorg. Chem., 2018, 3388-3396. https://doi.org/10.1002/ejic.201800201

    Article  CAS  Google Scholar 

  48. B. H. Toby and R. B. Von Dreele. J. Appl. Crystallogr., 2013, 46, 544-549. https://doi.org/10.1107/S002188

Download references

Funding

The work was supported by the Russian Science Foundation (Grant No. 19-73-00183) and the Ministry of Science and Higher Education of the Russian Federation (Projects Nos. 121031700321-3, 121031700313-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Konchenko.

Ethics declarations

The authors declare that they have no conflict of interests.

Additional information

Russian Text © The Author(s), 2021, published in Zhurnal Strukturnoi Khimii, 2021, Vol. 62, No. 10, pp. 1684-1691.https://doi.org/10.26902/JSC_id80783

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afonin, M.Y., Sedelnikova, A.Y., Konokhova, A.Y. et al. STRUCTURE AND COMPOSITION OF [(nacnac)MnCl]2 (nacnac = HC(C(Me)N(2.6-i-Pr2C6H3))2) PRODUCTS REDUCED BY POTASSIUM-INTERCALATED GRAPHITE IN TOLUENE AND BENZENE. J Struct Chem 62, 1580–1587 (2021). https://doi.org/10.1134/S0022476621100139

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476621100139

Keywords

Navigation