Skip to main content
Log in

Effects of Interferon-α on Depressive-Like Behavior and Brain Neurochemistry in Rats Housed in Standard and Overcrowding Conditions

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Immunotherapy with interferon-α (IFN-α) is frequently associated with neuropsychiatric consequences, including depression. Mechanisms underlying adverse effects of IFN-α are not fully understood. This study was aimed to determine whether intranasal administration of IFN-α can provoke depression-like behavior in rats and whether overcrowding stress can interfere or amplify the effects of IFN-α. To achieve this aim, effects of human IFN-α in low (50 IU/kg) and medium (8000 IU/kg) doses on the forced swimming test behavior and monoamines and their metabolite content in the brain structures of Wistar rats housed in standard and overcrowding conditions were investigated. Depressive-like behavior (increased immobility) was observed in rats housed in standard conditions after treatment with both doses of human IFN-α, as well as in vehicle-treated rats housed in stressful, overcrowding conditions. In standard conditions, a low dose of IFN-α produced a subtle alteration in the metabolism of dopamine only in one of the brain structures analyzed (nucleus accumbens). The medium dose of IFN-α induced more drastic neurochemical alterations in a larger number of brain structures. Overcrowding led to some changes in monoamine and their metabolite levels similar to those observed after IFN-α treatment with the medium dose in the standard housing conditions. In the overcrowded conditions, in contrast to the standard ones, IFN-α treatment in both doses reduced depression-like behavior and normalized neurochemical alterations induced by overcrowding. The results suggest that the effect of IFN-α on depression-like behavior and brain neurochemistry depends on the ongoing emotional status of animals: whether they are in stressful (overcrowded) or non-stressful (normal) conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. Reyes-Vázquez C, Prieto-Gómez B, Dafny N (2012) Interferon modulates central nervous system function. Brain Res 1442: 76–89. https://doi.org/10.1016/j.brainres.2011.09.061

    Article  CAS  PubMed  Google Scholar 

  2. Kaushik P, Khan MA, Agarwal NB, Garg A (2023) A systematic review on interferon alpha-induced cognitive impairment in hepatitis C patients. Curr Drug Saf 18: 159–166. https://doi.org/10.2174/1574886317666220428134931

    Article  CAS  PubMed  Google Scholar 

  3. Shi W, Yao X, Fu Y, Wang Y (2022) Interferon-α and its effects on cancer cell apoptosis (Review). Oncol Lett 24: 235. https://doi.org/10.3892/ol.2022.13355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lai JY, Ho JX, Kow ASF, Liang G, Tham CL, Ho Y-C and Lee MT (2023) Interferon therapy and its association with depressive disorders—A review. Front Immunol 14: 1048592. https://doi.org/10.3389/fimmu.2023.1048592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sockalingam S, Links PS, Abbey SE (2011) Suicide risk in hepatitis C and during interferon-alpha therapy: a review and clinical update. J Viral Hepat 18: 153–160. https://doi.org/10.1111/j.1365-2893.2010.01393.x

    Article  CAS  PubMed  Google Scholar 

  6. Pinto EF, Andrade C (2016) Interferon-Related Depression: A Primer on Mechanisms, Treatment, and Prevention of a Common Clinical Problem. Curr Neuropharmacol 14: 743–748. https://doi.org/10.2174/1570159x14666160106155129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fahey B, Hickey B, Kelleher D, O’Dwyer A-M, O’Mara SM (2007) The widely-used anti-viral drug interferon-alpha induces depressive- and anxiogenic-like effects in healthy rats. Behav Brain Res 182: 80–87. https://doi.org/10.1016/j.bbr.2007.05.005

    Article  CAS  PubMed  Google Scholar 

  8. Felger JC, Alagbe O, Hu F, Mook D, Freeman AA, Sanchez MM, Kalin NH, Ratti E, Nemeroff CB, Miller AH (2007) Effects of interferon-alpha on rhesus monkeys: a nonhuman primate model of cytokine-induced depression. Biol Psychiatry 62: 1324–1333. https://doi.org/10.1016/j.biopsych.2007.05.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Raison CL, Demetrashvili M, Capuron L, Miller AH (2005) Neuropsychiatric adverse effects of interferon-alpha: recognition and management. CNS Drugs 19: 105–123. https://doi.org/10.2165/00023210-200519020-00002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mayr N, Zeitlhofer J, Deecke L, Fritz E, Ludwig H, Gisslinger H (1999) Neurological Function During Long-Term Therapy with Recombinant Interferon Alpha. J Neuropsychiatry Clin Neurosci 11: 343–348. https://doi.org/10.1176/jnp.11.3.343

    Article  CAS  PubMed  Google Scholar 

  11. Rotman Y, Borg BB, Soza A, Feld JJ, Modi AA, Loomba R, Lutchman G, Rivera E, Doo E, Ghany MG, Heller T, Neumann AU, Liang TJ, Hoofnagle JH (2010) Low- and standard-dose peginterferon alfa-2a for chronic hepatitis C, genotype 2 or 3: efficacy, tolerability, viral kinetics and cytokine response. Aliment Pharmacol Ther 31: 1018–1027. https://doi.org/10.1111/j.1365-2036.2010.04263.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Loseva EV, Loginova NA, Sarkisova KY, Klodt PM, Narkevich V, Kudrin VS (2018) Behavioral Symptoms of Anxiety and Depression and Brain Monoamine Contents in Rats after Chronic Intranasal Administration of Interferon-α. Neurosci Behav Physiol 48: 954–962. https://doi.org/10.1007/s11055-018-0655-8

    Article  CAS  Google Scholar 

  13. Felger JC, Li L, Marvar PJ, Woolwine BJ, Harrison DG, Raison CL, Miller AH (2013) Tyrosine metabolism during interferon-alpha administration: association with fatigue and CSF dopamine concentrations. Brain Behav Immun 31: 153–160. https://doi.org/10.1016/j.bbi.2012.10.010

    Article  CAS  PubMed  Google Scholar 

  14. Kuter K, Kolasiewicz W, Gołembiowska K, Dziubina A, Schulze G, Berghauzen K, Wardas J, Ossowska K (2011) Partial lesion of the dopaminergic innervation of the ventral striatum induces “depressive-like” behavior of rats. Pharmacol Rep 63: 1383–1392. https://doi.org/10.1016/s1734-1140(11)70702-2

    Article  CAS  PubMed  Google Scholar 

  15. Udina M, Navinés R, Egmond E, Oriolo G, Langohr K, Gimenez D, Valdés M, Gómez-Gil E, Grande I, Gratacós M, Kapczinski F, Artigas F, Vieta E, Solà R, Martín-Santos R (2016) Glucocorticoid Receptors, Brain-Derived Neurotrophic Factor, Serotonin and Dopamine Neurotransmission are Associated with Interferon-Induced Depression. Int J Neurophsychopharmacol 19: pyv135. https://doi.org/10.1093/ijnp/pyv135

    Article  CAS  Google Scholar 

  16. Anisman H (2009) Cascading effects of stressors and inflammatory immune system activation: implications for major depressive disorder. J Psychiatry Neurosci 34: 4–20. PMID: 19125209; PMCID: PMC2612083.

    PubMed  PubMed Central  Google Scholar 

  17. Anisman H, Poulter MO, Gandhi R, Merali Z, Hayley S (2007) Interferon-alpha effects are exaggerated when administered on a psychosocial stressor backdrop: cytokine, corticosterone and brain monoamine variations. J Neuroimmunol 186: 45–53. https://doi.org/10.1016/j.jneuroim.2007.02.008

    Article  CAS  PubMed  Google Scholar 

  18. Bai M, Zhang L, Zhu X, Zhang Y, Zhang S, Xue L (2014) Comparison of depressive behaviors induced by three stress paradigms in rats. Physiol Behav 131: 81–86. https://doi.org/10.1016/j.physbeh.2014.04.019

    Article  CAS  PubMed  Google Scholar 

  19. Kubera M, Obuchowicz E, Goehler L, Brzeszcz J, Maes M (2011) In animal models, psychosocial stress-induced (neuro)inflammation, apoptosis and reduced neurogenesis are associated to the onset of depression. Prog Neuropsychopharmacol Biol Psychiatry 35: 744–759. https://doi.org/10.1016/j.pnpbp.2010.08.026

    Article  CAS  PubMed  Google Scholar 

  20. Loseva EV (2021) [Psychosocial stress of overpopulation (crowding): negative consequences for human body and rodents] Integr Physiol 2: 33–40. Russian https://doi.org/10.33910/2687-1270-2021-2-1-33-40

  21. Knyazeva SI, Loginova NA, Loseva EV (2012) Anxiety level and body weight changes in rats living in overpopulated cages. Bull Exp Biol Med 154: 3–6. https://doi.org/10.1007/s10517-012-1860-z

    Article  CAS  PubMed  Google Scholar 

  22. Botelho S, Estanislau C, Morato S (2007) Effects of under- and overcrowding on exploratory behavior in the elevated plus-maze. Behav Processes 74: 357–362. https://doi.org/10.1016/j.beproc.2006.12.006

    Article  CAS  PubMed  Google Scholar 

  23. Loseva EV, Loginova NA, Mezentseva MV, Klodt PM, Kudrin VS (2013) Immunological parameters of the blood and monoamine content in the brain of rats during long-term overcrowding. Bull Exp Biol Med 155: 470–473. https://doi.org/10.1007/s10517-013-2181-6

    Article  CAS  PubMed  Google Scholar 

  24. Gadek-Michalska A, Bugajski AJ, Bugajski J (2008) Prostaglandins and interleukin-1beta in the hypothalamic-pituitary-adrenal response to systemic phenylephrine under basal and stress conditions. J Physiol Pharmacol 59: 563–575. PMID: 18953098

    CAS  PubMed  Google Scholar 

  25. Virtanen M, Pentti J, Vahtera J, Ferrie JE, Stansfeld SA, Helenius H, Elovainio M, Honkonen T, Terho K, Oksanen T, Kivimäki M (2008) Overcrowding in hospital wards as a predictor of antidepressant treatment among hospital staff. Am J Psychiatry 16: 1482–1486. https://doi.org/10.1176/appi.ajp.2008.07121929

    Article  Google Scholar 

  26. Sadowski H, Ugarte B, Kolvin I, Kaplan C, Barnes J (1999) Early life family disadvantages and major depression in adulthood. Br J Psychiatry 174: 112–120. https://doi.org/10.1192/bjp.174.2.112.

    Article  CAS  PubMed  Google Scholar 

  27. Herzog CJ, Czéh B, Corbach S, Wuttke W, Schulte-Herbrüggen O, Hellweg R, Flügge G, Fuchs E (2009) Chronic social instability stress in female rats: a potential animal model for female depression. Neurosci 159: 982–992. https://doi.org/10.1016/j.neuroscience.2009.01.059

    Article  CAS  Google Scholar 

  28. Slattery DA, Uschold N, Magoni M, Bär J, Popoli M, Neumann ID, Reber SO (2012) Behavioural consequences of two chronic psychosocial stress paradigms: anxiety without depression. Psychoneuroendocrinol 37: 702–714. https://doi.org/10.1016/j.psyneuen.2011.09.002

    Article  Google Scholar 

  29. Naitoh H, Nomura S, Kunimi Y, Yamaoka K (1992) Swimming-induced Head Twitching in Rats in the Forced Swimming Test Induced by Overcrowding Stress: A New Marker in the Animal Model of Depression. Keio J Med 41: 221–224. https://doi.org/10.2302/kjm.41.221

    Article  CAS  PubMed  Google Scholar 

  30. Loseva EV, Sarkisova KY, Loginova NA, Kudrin VS (2015) Depressive Behavior and Monoamine Contents in Brain Structures of Rats During Chronic Overcrowding. Bull Exp Biol Med 3: 327–330. https://doi.org/10.1007/s10517-015-2953-2

    Article  CAS  Google Scholar 

  31. Sarkisova KY, Kulikov MA, Kudrin VS, Narkevich VB, Midzianovskaia IS, Biriukova LM, Folomkina AA, Basian AS (2013) Neurochemical mechanisms of depression-like behavior in WAG/Rij rats. Zh Vyssh Nerv Deiat Im IP Pavlova 63: 303–315. https://doi.org/10.7868/s0044467713030106

    Article  Google Scholar 

  32. Morilak DA, Frazer A (2004) Antidepressants and brain monoaminergic systems: a dimensional approach to understanding their behavioural effects in depression and anxiety disorders. Int J Neuropsychopharmacol 7: 193–218. https://doi.org/10.1017/S1461145704004080

    Article  CAS  PubMed  Google Scholar 

  33. Raison CL, Borisov AS, Majer M, Drake DF, Pagnoni G, Woolwine BJ, Vogt GJ, Massung B, Miller AH (2009) Activation of central nervous system inflammatory pathways by interferon-alpha: relationship to monoamines and depression. Biol Psychiatry 65: 296–303. https://doi.org/10.1016/j.biopsych.2008.08.010

    Article  CAS  PubMed  Google Scholar 

  34. Crnic LS, Segall MA (1992) Behavioral effects of mouse interferons-alpha and -gamma and human interferon-alpha in mice. Brain Res 590: 277–284. https://doi.org/10.1016/0006-8993(92)91106-o.

    Article  CAS  PubMed  Google Scholar 

  35. Makino M, Kitano Y, Komiyama C, Takasuna K (2000) Human interferon-alpha increases immobility in the forced swimming test in rats. Psychopharmacol 148: 106–110. https://doi.org/10.1007/s002130050031

    Article  CAS  Google Scholar 

  36. Loseva EV, Loginova NA, Nekliudov VV, Mats VN, Kurskaia OV, Pasikova NV (2009) Effects of human and rat interferons-alpha on the behavior of rats of different ages. Comparative study of the homology of amino acid sequences. Zh Vyssh Nerv Deiat Im I P Pavlova 59: 461–472. (In Russ). PMID: 19795809.

    CAS  PubMed  Google Scholar 

  37. Slaton JW, Karashima T, Perrotte P, Inoue K, Kim SJ, Izawa J, Kedar D, McConkey DJ, Millikan R, Sweeney P, Yoshikawa C, Shuin T, Dinney CP (2001) Treatment with low-dose interferon-alpha restores the balance between matrix metalloproteinase-9 and E-cadherin expression in human transitional cell carcinoma of the bladder. Clin Cancer Res 7: 2840–2853. PMID: 11555602.

    CAS  PubMed  Google Scholar 

  38. Wen MM (2011) Olfactory targeting through intranasal delivery of biopharmaceutical drugs to the brain: current development. Discov Med 11(61):497–503. PMID: 21712015

    PubMed  Google Scholar 

  39. Ross TM, Martinez PM, Renner JC, Thorne RG, Hanson LR, Frey WH (2004) Intranasal administration of interferon beta bypasses the blood-brain barrier to target the central nervous system and cervical lymph nodes: a non-invasive treatment strategy for multiple sclerosis. J Neuroimmunol 151: 66–77. https://doi.org/10.1016/j.jneuroim.2004.02.011

    Article  CAS  PubMed  Google Scholar 

  40. Dhuria SV, Hanson LR, Frey WH (2010) Intranasal delivery to the central nervous system: Mechanisms and experimental considerations. J Pharm Sci 99: 1654–1673. https://doi.org/10.1002/jps.21924

    Article  CAS  PubMed  Google Scholar 

  41. Tian L, Guo R, Yue X, Lv Q, Ye X, Wang Z, Chen Z, Wu B, Xu G, Liu X (2012) Intranasal administration of nerve growth factor ameliorate β-amyloid deposition after traumatic brain injury in rats. Brain Res 1440: 47–55. https://doi.org/10.1016/j.brainres.2011.12.059

    Article  CAS  PubMed  Google Scholar 

  42. Loseva EV, Mezentseva MV, Russu LI, Loginova NA, Panov NV, Shchetvin MN, Suetina IA (2016) Suppression of cytokine synthesis in spleen and brain and small changes in c-fos expression in rat brain after intranasal administration of single-walled carbon nanotubes. Nanotechnol Russ 11: 237–246. https://doi.org/10.1134/S1995078016020129

    Article  CAS  Google Scholar 

  43. Cryan JF, Valentino RJ, Lucki I (2005) Assessing substrates underlying the behavioral effects of antidepressants using the modified rat forced swimming test. Neurosci Biobehav Reviews 29: 547–569. https://doi.org/10.1016/j.neubiorev.2005.03.008

    Article  CAS  Google Scholar 

  44. Porsolt RD, Le Pichon M, Jalfre M (1977) Depression: a new animal model sensitive to antidepressant treatments. Nature 266: 730–732. https://doi.org/10.1038/266730a0

    Article  CAS  PubMed  Google Scholar 

  45. Sarkisova KY, Midzianovskaia IS, Kulikov MA (2003) Depressive-like behavioral alterations and c-fos expression in the dopaminergic brain regions in WAG/Rij rats with genetic absence epilepsy. Behav Brain Res 144: 211–226. https://doi.org/10.1016/s0166-4328(03)00090-1

    Article  CAS  PubMed  Google Scholar 

  46. Sarkisova K, van Luijtelaar G (2011) The WAG/Rij strain: A genetic animal model of absence epilepsy with comorbidity of depression. Prog Neuropsychopharmacol Biol Psychiatry 35: 854–876. https://doi.org/10.1016/j.pnpbp.2010.11.010

    Article  CAS  PubMed  Google Scholar 

  47. Sarkisova KY, Gabova AV, Fedosova EA, Shatskova AB, Narkevich VB, Kudrin VS (2023) Antidepressant and Anxiolytic Effects of L-Methionine in the WAG/RIJ Rat Model of Depression Comorbid with Absence Epilepsy. Int J Mol Sci 24: 12425. https://doi.org/10.3390/ijms241512425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Krupina NA, Khlebnikova NN, Narkevich VB, Naplekova PL, Kudrin VS (2020) The Levels of Monoamines and Their Metabolites in the Brain Structures of Rats Subjected to Two- and Three-Month-Long Social Isolation. Bull Exp Biol Med 168: 605–609. https://doi.org/10.1007/s10517-020-04761-5

    Article  CAS  PubMed  Google Scholar 

  49. Asnis GM, De La Garza R (2006) Interferon-induced depression in chronic hepatitis C: a review of its prevalence, risk factors, biology, and treatment approaches. J Clin Gastroenterol 40: 322–335. https://doi.org/10.1097/01.mcg.0000210099.36500.fe

    Article  CAS  PubMed  Google Scholar 

  50. Kalyoncu OA, Tan D, Mirsal H, Pektas O, Beyazyurek M (2005) Major depressive disorder with psychotic features induced by interferon-alpha treatment for hepatitis C in a polydrug abuser. J Psychopharmacol 19: 102–105. https://doi.org/10.1177/0269881105048905

    Article  PubMed  Google Scholar 

  51. Bhatt S, Pundarikakshudu K, Patel P, Patel N, Panchal A, Shah G, Goswami S (2016) Beneficial effect of aspirin against interferon-α-2b-induced depressive behavior in Sprague Dawley rats. Clinical and Experimental Pharmacol Physiol 43: 1208–1215. https://doi.org/10.1111/1440-1681.12660

    Article  CAS  Google Scholar 

  52. Wichers MC, Kenis G, Koek GH, Robaeys G, Nicolson NA, Maes M (2007) Interferon-α-induced depressive symptoms are related to changes in the cytokine network but not to cortisol. J Psychosom Res 62: 207–214. https://doi.org/10.1016/j.jpsychores.2006.09.007

    Article  PubMed  Google Scholar 

  53. Lotrich FE (2015) Inflammatory cytokine-associated depression. Brain Res 1617: 113–125. https://doi.org/10.1016/j.brainres.2014.06.032

    Article  CAS  PubMed  Google Scholar 

  54. Felger JC, Haroon E, Woolwine BJ, Raison CL, Miller AH (2016) Interferon-alpha-induced inflammation is associated with reduced glucocorticoid negative feedback sensitivity and depression in patients with hepatitis C virus. Physiol Behav 166: 14–21. https://doi.org/10.1016/j.physbeh.2015.12.013

    Article  CAS  PubMed  Google Scholar 

  55. Wachholz S, Eßlinger M, Plümper J, Manitz MP, Juckel G, Friebe A (2016) Microglia activation is associated with IFN-α induced depressive-like behavior. Brain Behav Immun 55: 105–113. https://doi.org/10.1016/j.bbi.2015.09.016

    Article  CAS  PubMed  Google Scholar 

  56. Sato T, Suzuki E, Yokoyama M, Semba J, Watanabe S, Miyaoka H (2006) Chronic intraperitoneal injection of interferon-α reduces serotonin levels in various regions of rat brain, but does not change levels of serotonin transporter mRNA, nitrite or nitrate. Psychiatry Clin Neurosci 60: 499–506. https://doi.org/10.1111/j.1440-1819.2006.01538.x

    Article  CAS  PubMed  Google Scholar 

  57. Raison CL, Borisov AS, Woolwine BJ, Massung B, Vogt G, Miller AH (2010) Interferon-alpha effects on diurnal hypothalamic-pituitary-adrenal axis activity: relationship with proinflammatory cytokines and behavior. Mol Psychiatry 15: 535–547. https://doi.org/10.1038/mp.2008.58

    Article  CAS  PubMed  Google Scholar 

  58. Felger JC, Treadway MT (2017) Inflammation Effects on Motivation and Motor Activity: Role of Dopamine. Neuropsychopharmacol 42: 216–241. https://doi.org/10.1038/npp.2016.143

    Article  CAS  Google Scholar 

  59. Kamata M, Higuchi H, Yoshimoto M, Yoshida K, Shimizu T (2000) Effect of single intracerebroventricular injection of alpha-interferon on monoamine concentrations in the rat brain. Eur Neuropsychopharmacol 10: 129–132 https://doi.org/10.1016/s0924-977x(99)00067-x

    Article  CAS  PubMed  Google Scholar 

  60. Ishikawa J, Ishikawa A, Nakamura S (2007) Interferon-alpha reduces the density of monoaminergic axons in the rat brain. Neuroreport 18: 137–140. https://doi.org/10.1097/WNR.0b013e328010231a

    Article  CAS  PubMed  Google Scholar 

  61. Shuto H, Kataoka Y, Horikawa T, Fujihara N, Oishi R (1997) Repeated interferon-alpha administration inhibits dopaminergic neural activity in the mouse brain. Brain Res 747: 348–351. https://doi.org/10.1016/s0006-8993(96)01371-6

    Article  CAS  PubMed  Google Scholar 

  62. De La Garza R, Asnis GM (2003) The non-steroidal anti-inflammatory drug diclofenac sodium attenuates IFN-alpha induced alterations to monoamine turnover in prefrontal cortex and hippocampus. Brain Res 977: 70–79. https://doi.org/10.1016/s0006-8993(03)02757-4

    Article  Google Scholar 

  63. Kang YM, Chen JU, Ouyang W, Qiao JT, Reyes-Vazquez C, Dafny N (2004) Serotonin modulates hypothalamic neuronal activity. Int J Neurosci 114: 299–319. https://doi.org/10.1080/00207450490264115

    Article  CAS  PubMed  Google Scholar 

  64. Shimizu N, Take S, Hori T, Oomura Y (1992) In vivo measurement of hypothalamic serotonin release by intracerebral microdialysis: Significant enhancement by immobilization stress in rats. Brain Res Bull 28: 727–734. https://doi.org/10.1016/0361-9230(92)90252-S

    Article  CAS  PubMed  Google Scholar 

  65. Bai M, Zhu X, Xue L, Zhang Y, Xue L, Wang Y, Zhong M, Zhang X (2017) Divergent anomaly in mesocorticolimbic dopaminergic circuits might be associated with different depressive behaviors, an animal study. Brain Behav 7: e00808. https://doi.org/10.1002/brb3.808

    Article  PubMed  PubMed Central  Google Scholar 

  66. Boranic M, Pericic D, Radacic M, Poljak-Blazi M, Sverko V, Miljenovic G (1982) Immunological and neuroendocrine responses of rats to prolonged or repeated stress. Biomed Pharmacother 36: 23–28. PMID: 6127122.

    CAS  PubMed  Google Scholar 

  67. Daniels WM, Pietersen CY, Carstens ME, Daya S, Stein D (2000) Overcrowding induces anxiety and causes loss of serotonin 5HT-1a receptors in rats. Metab Brain Dis 15: 287–295. https://doi.org/10.1023/a:1011123208674

    Article  CAS  PubMed  Google Scholar 

  68. Reber SO, Obermeier F, Straub RH, Straub HR, Falk W, Neumann ID (2006) Chronic intermittent psychosocial stress (social defeat/overcrowding) in mice increases the severity of an acute DSS-induced colitis and impairs regeneration. Endocrinol 147: 4968–4976. https://doi.org/10.1210/en.2006-0347

    Article  CAS  Google Scholar 

  69. Tsukamoto K, Machida K, Ina Y, Kuriyama T, Suzuki K, Murayama R, Saiki C (1994) Effects of crowding on immune functions in mice. Nihon Eiseigaku Zasshi 49: 827–836. (In Japanese). https://doi.org/10.1265/jjh.49.827

    Article  CAS  PubMed  Google Scholar 

  70. Raison CL, Capuron L, Miller AH (2006) Cytokines sing the blues: inflammation and the pathogenesis of depression. Trends Immunol 27: 24–31. https://doi.org/10.1016/j.it.2005.11.006

    Article  CAS  PubMed  Google Scholar 

  71. Young JJ, Bruno D, Pomara N (2014) A review of the relationship between proinflammatory cytokines and major depressive disorder. J Affect Disord 169: 15–20. https://doi.org/10.1016/j.jad.2014.07.032

    Article  CAS  PubMed  Google Scholar 

  72. Schmidt FM, Schröder T, Kirkby KC, Sander C, Suslow T, Holdt LM, Teupser D, Hegerl U, Himmerich H (2016) Pro- and anti-inflammatory cytokines, but not CRP, are inversely correlated with severity and symptoms of major depression. Psychiatry Res 239: 85–91. https://doi.org/10.1016/j.psychres.2016.02.052

    Article  CAS  PubMed  Google Scholar 

  73. Curtin NM, Boyle NT, Mills KHG, Connor TJ (2009) Psychological stress suppresses innate IFN-γ production via glucocorticoid receptor activation: Reversal by the anxiolytic chlordiazepoxide. Brain Behav Immun 23: 535–547. https://doi.org/10.1016/j.bbi.2009.02.003

    Article  CAS  PubMed  Google Scholar 

  74. Belardelli F (1995) Role of interferons and other cytokines in the regulation of the immune response. APMIS 103: 161–179. https://doi.org/10.1111/j.1699-0463.1995.tb01092.x

    Article  CAS  PubMed  Google Scholar 

  75. Song C, Halbreich U, Han C, Leonard BE, Luo H (2009) Imbalance between Pro- and Anti-inflammatory Cytokines, and between Th1 and Th2 Cytokines in Depressed Patients: The Effect of Electroacupuncture or Fluoxetine Treatment. Pharmacopsychiatry 42: 182–188. https://doi.org/10.1055/s-0029-1202263

    Article  CAS  PubMed  Google Scholar 

  76. Li BL, Zhao XX, Liu XY, Kim HS, Raska K, Ortaldo JR, Schwartz B, Pestka S (1990) Alpha-interferon structure and natural killer cell stimulatory activity. Cancer Res 50: 5328–5332. PMID: 2201435.

    CAS  PubMed  Google Scholar 

  77. Blume J, Douglas SD, Evans DL (2011) Immune suppression and immune activation in depression. Brain Behav Immun 25: 221–229. https://doi.org/10.1016/j.bbi.2010.10.008

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The study was prepared solely within the state assignment of Ministry of Education and Science of the Russian Federation for 2021–2023.

Author information

Authors and Affiliations

Authors

Contributions

N.A. Loginova: investigation, writing—original draft preparation. E.V. Loseva: conceptualization, investigation, writing—original draft preparation, writing—reviewing and editing. K.Yu. Sarkisova: writing—reviewing and editing, investigation, methodology. V.S. Kudrin: investigation.

Corresponding author

Correspondence to E. V. Loseva.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

All procedures complied with the ethical standards approved by legal acts of the Russian Federation, the principles of the Basel Declaration, and by the Bioethics Committee of IHNA&NPh RAS (Minutes number 3 of 10.07.2020).

CONFLICT OF INTERESTS

The authors declare no competing interests.

Additional information

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loginova, N.A., Loseva, E.V., Sarkisova, K.Y. et al. Effects of Interferon-α on Depressive-Like Behavior and Brain Neurochemistry in Rats Housed in Standard and Overcrowding Conditions. J Evol Biochem Phys 59, 2005–2021 (2023). https://doi.org/10.1134/S0022093023060108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093023060108

Keywords:

Navigation