Skip to main content
Log in

Physiological Aspects of the Application of Gonadotropin-Releasing Hormone Agonists in Clinical and Experimental Obstetrics and Gynecology

  • Reviews
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

A literature search was carried out to analyze the works on the application of gonadotropin-releasing hormone (GnRH) agonists in clinical obstetrics and gynecology, as well as in experimental studies. Here we address the physiological aspects of the GnRH influence on the ovaries and uterus both in normal and some pathological conditions. It is concluded that long-term use of GnRH agonists suppresses ovulation and induces a menopause-like condition. GnRH agonist infusion is a simple method of suppressing the production of luteinizing and follicle-stimulating hormones, as well as folliculogenesis. In the ovaries, granulosa cell activity is inhibited by the suppression of DNA synthesis and induction of apoptosis with simultaneous stimulation of cell differentiation in preovulatory follicles. This condition is reversible, with fertility being preserved. Due to rapid uterine involution after the use of GnRH analogs, it is possible to delay or even arrest uterine myoma progression followed by the disappearance of its symptoms. With uterine hypotrophy, the endometrium corresponds to an atrophic or resting proliferative type. At the same time, there is quite opposite evidence that long-term use of GnRH promotes endometrial hyperplasia and endometritis. GnRH-based drugs are successfully used to treat benign and malignant processes in the ovaries and uterus, as well as to affect metastases, although there are studies showing that the direct effect of GnRH on tumors is poorly pronounced. There are apprehensions that gonadotropins can even stimulate the development of ovarian cancer by acting on certain receptors. Most authors report a good protective capacity of GnRH agonists during chemotherapy, but there is evidence of little or no protective effect of this group of drugs. Either way, the inconsistency of publications on each of the aspects of GnRH effects emphasizes the advisability to further not only applied but also fundamental studies in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Emons G, Gründker C (2021) The Role of Gonadotropin-Releasing Hormone (GnRH) in Endometrial Cancer. Cells 10(2): 292. https://doi.org/10.3390/cells10020292

    Article  CAS  Google Scholar 

  2. Brogden RN, Buckley MM, Ward A (1990) Buserelin. A review of its pharmacodynamic and pharmacokinetic properties, and clinical profile. Drugs 39(3): 399–437. https://doi.org/10.2165/00003495-199039030-00007

    Article  CAS  Google Scholar 

  3. Plosker GL, Brogden RN (1994) Leuprorelin. A review of its pharmacology and therapeutic use in prostatic cancer, endometriosis and other sex hormone-related disorders. Drugs 48(6): 930–967. https://doi.org/10.2165/00003495-199448060-00008

    Article  CAS  Google Scholar 

  4. Sand E, Linninge C, Lozinska L, Egecioglu E, Roth B, Molin G, Weström B, Ekblad E, Ohlsson B (2015) Buserelin treatment to rats causes enteric neurodegeneration with moderate effects on CRF-immunoreactive neurons and Enterobacteriaceae in colon, and in acetylcholine-mediated permeability in ileum. BMC Res Notes 8: 824. https://doi.org/10.1186/s13104-015-1800-x

    Article  CAS  Google Scholar 

  5. Ohlsson B (2016) Gonadotropin-Releasing Hormone and Its Physiological and Pathophysiological Roles in Relation to the Structure and Function of the Gastrointestinal Tract. Eur Surg Res 57(1–2): 22–33. https://doi.org/10.1159/000445717

    Article  CAS  Google Scholar 

  6. Jönsson A, Sand E, Ekblad E, Ohlsson B (2016) Long‑term follow‑up of buserelin‑induced enteric neuropathy in rats. Mol Med Rep 13(4): 3507–3513. https://doi.org/10.3892/mmr.2016.4968

    Article  CAS  Google Scholar 

  7. Ezoe K, Murata N, Yabuuchi A, Kobayashi T, Kato K (2019) Evaluation of uterine receptivity after gonadotropin releasing hormone agonist administration as an oocyte maturation trigger: a rodent model. Sci Rep 9(1): 12519. https://doi.org/10.1038/s41598-019-48918-3

    Article  CAS  Google Scholar 

  8. Lopes TP, Padilla L, Bolarin A, Rodriguez-Martinez H, Roca J (2020) Weaned Sows with Small Ovarian Follicles Respond Poorly to the GnRH Agonist Buserelin. Animals (Basel) 10(11): 1979. https://doi.org/10.3390/ani10111979

  9. Kaps M, Okada CTC, Gautier C, Aurich J, Scarlet D, Kuhl J, Aurich C (2021) Transient suppression of ovulatory ovarian function in pony mares after treatment with slow-release deslorelin implants. Domest Anim Endocrinol 74: 106505. https://doi.org/10.1016/j.domaniend.2020.106505

    Article  CAS  Google Scholar 

  10. Abdulkhalikova D, Bokal EV, Stimpfel M, Ciglar P, Korosec S (2022) Reproductive Outcome After GnRH Agonist Triggering With Co-Administration of 1500 IU hCG on the Day of Oocyte Retrieval in High Responders: A Long-Term Retrospective Cohort Study. Front Endocrinol (Lausanne) 13:826411. https://doi.org/10.3389/fendo.2022.826411

  11. Kong J, Su F, Liu Y, Yang Y, Cao Y, Qiu J, Wang Y, Zhang L, Wang J, Cao X (2022) The pharmacokinetics of buserelin after intramuscular administration in pigs and cows. BMC Vet Res 18(1): 136. https://doi.org/10.1186/s12917-022-03237-0

    Article  CAS  Google Scholar 

  12. Liu Y, Yang J, Che X, Huang J, Zhang X, Fu X, Cai J, Yao Y, Zhang H, Cai R, Su X, et al. (2021) Agonistic analog of growth hormone-releasing hormone promotes neurofunctional recovery and neural regeneration in ischemic stroke. Proc Natl Acad Sci USA 118(47): e2109600118. https://doi.org/10.1073/pnas.2109600118

  13. Rieger AC, Bagno LL, Salerno A, Florea V, Rodriguez J, Rosado M, Turner D, Dulce RA, Takeuchi LM, Kanashiro-Takeuchi RM, Buchwald P, Wanschel ACBA, Balkan W, Schulman IH, Schally AV, Hare JM (2021) Growth hormone-releasing hormone agonists ameliorate chronic kidney disease-induced heart failure with preserved ejection fraction. Proc Natl Acad Sci USA 118(4): e2019835118. https://doi.org/10.1073/pnas.2019835118

    Article  CAS  Google Scholar 

  14. Cai R, Zhang X, Wang H, Cui T, Halmos G, Sha W, He J, Popovics P, Vidaurre I, Zhang C, Mirsaeidi M, Schally AV (2022) Synthesis of potent antagonists of receptors for growth hormone-releasing hormone with antitumor and anti-inflammatory activity. Peptides 150:170716. https://doi.org/10.1016/j.peptides.2021.170716

    Article  CAS  Google Scholar 

  15. Recinella L, Chiavaroli A, Di Valerio V, Veschi S, Orlando G, Ferrante C, Gesmundo I, Granata R, Cai R, Sha W, Schally AV, Lattanzio R, Brunetti L, Leone S (2021) Protective effects of growth hormone-releasing hormone analogs in DSS-induced colitis in mice. Sci Rep 11(1): 2530. https://doi.org/10.1038/s41598-021-81778-4

    Article  CAS  Google Scholar 

  16. Cen LP, Ng TK, Liang JJ, Xu C, Zhuang X, Liu YF, Chen SL, Xu Y, Yang Q, Yuan XL, Qin YJ, Chan SO, Chen H, Zhang M, Schally AV, Pang CP (2021) Agonist of growth hormone-releasing hormone enhances retinal ganglion cell protection induced by macrophages after optic nerve injury. Proc Natl Acad Sci USA 118(28): e1920834118. https://doi.org/10.1073/pnas.1920834118

    Article  CAS  Google Scholar 

  17. Baumann R, Kuhl H, Taubert HD, Sandow J (1980) Ovulation inhibition by daily i.m. administration of a highly active LH-RH analog (d-ser(TBU)6-LH-RH-(1-9)-nonapeptide-ethylamide). Contraception 21(2): 191–197. https://doi.org/10.1016/0010-7824(80)90131-6

    Article  CAS  Google Scholar 

  18. Kaps M, Okada CTC, Gautier C, Aurich J, Scarlet D, Kuhl J, Aurich C (2021) Transient suppression of ovulatory ovarian function in pony mares after treatment with slow-release deslorelin implants. Domest Anim Endocrinol 74:106505. https://doi.org/10.1016/j.domaniend.2020.106505

    Article  CAS  Google Scholar 

  19. Fanelli D, Beltramo M, Conte G, Cerretini B, Lomet D, Rota A, Aucagne V, Camillo F, Panzani D (2022) The Kisspeptin analogue C6 induces ovulation in jennies. Theriogenology 189:107–112. https://doi.org/10.1016/j.theriogenology.2022.06.014

    Article  CAS  Google Scholar 

  20. Shimozawa N, Iwata T, Yasutomi Y (2022) A controlled ovarian stimulation procedure suitable for cynomolgus macaques. Exp Anim. Epub ahead of print. https://doi.org/10.1538/expanim.21-0198

  21. Yano T, Yano N, Matsumi H, Morita Y, Tsutsumi O, Schally AV, Taketani Y (1997) Effect of luteinizing hormone-releasing hormone analogs on the rat ovarian follicle development. Horm Res 48 Suppl 3:35–41. https://doi.org/10.1159/000191298

    Article  Google Scholar 

  22. Ataya KM, Sakr W, Blacker CM, Mutchnick MG, Latif ZA (1989) Effect of GnRH agonists on the thymus in female rats. Acta Endocrinol (Copenh) 121(6): 833–840. https://doi.org/10.1530/acta.0.1210833

  23. Saragüeta PE, Lanuza GM, Barañao JL (1997) Inhibitory effect of gonadotrophin-releasing hormone (GnRH) on rat granulosa cell deoxyribonucleic acid synthesis. Mol Reprod Dev 47(2): 170–174. https://doi.org/10.1002/(SICI)1098-2795(199706)47:2<170::AID-MRD7>3.0.CO;2-J

    Article  Google Scholar 

  24. Zhao S, Saito H, Wang X, Saito T, Kaneko T, Hiroi M (2000) Effects of gonadotropin-releasing hormone agonist on the incidence of apoptosis in porcine and human granulosa cells. Gynecol Obstet Invest 49(1): 52–56. https://doi.org/10.1159/000010213

    Article  CAS  Google Scholar 

  25. Takekida S, Deguchi J, Samoto T, Matsuo H, Maruo T (2000) Comparative analysis of the effects of gonadotropin-releasing hormone agonist on the proliferative activity, apoptosis, and steroidogenesis in cultured porcine granulosa cells at varying stages of follicular growth. Endocrine 12(1): 61–67. https://doi.org/10.1385/ENDO:12:1:61

    Article  CAS  Google Scholar 

  26. Yoshimura Y, Nakamura Y, Yamada H, Nanno T, Ubukata Y, Ando M, Suzuki M (1991) Gonadotropin-releasing hormone agonists induce meiotic maturation and degeneration of oocytes in the in vitro perfused rabbit ovary. Fertil Steril 55(1): 177–183. https://doi.org/10.1016/s0015-0282(16)54079-5

    Article  CAS  Google Scholar 

  27. Yoshimura Y, Nakamura Y, Ando M, Shiokawa S, Koyama N, Nanno T (1992) Direct effect of gonadotropin-releasing hormone agonists on the rabbit ovarian follicle. Fertil Steril 57(5): 1091–1097. https://doi.org/10.1016/s0015-0282(16)55029-8

    Article  CAS  Google Scholar 

  28. Geyer A, Poth T, Otzdorff C, Daub L, Reese S, Braun J, Walter B (2016) Histopathologic examination of the genital tract in rabbits treated once or twice with a slow-release deslorelin implant for reversible suppression of ovarian function. Theriogenology 86(9): 2281–2289. https://doi.org/10.1016/j.theriogenology.2016.07.024

    Article  CAS  Google Scholar 

  29. Trindade CR, Camargos AF, Pereira FE (2008) The effect of buserelin acetate on the uterus of adult rats: morphological aspects. Clin Exp Obstet Gynecol 35(3): 198–201.

    CAS  Google Scholar 

  30. Janowski T, Zduńczyk S, Mwaanga ES (2001) Combined gnRH and PGF2alpha application in cows with endometritis puerperalis treated with antibiotics. Reprod Domest Anim 36(5): 244–246. https://doi.org/10.1046/j.1439-0531.2001.00290.x

    Article  CAS  Google Scholar 

  31. Kerr-Wilson RH, MacKenzie L, Fraser HM (1981) Effects of chronic LHRH agonist treatment on the endometrium and ovaries of the stumptailed macaque. Contraception 24(6): 647–655. https://doi.org/10.1016/0010-7824(81)90016-0

    Article  CAS  Google Scholar 

  32. Wu HM, Chen LH, Schally AV, Huang HY, Soong YK, Leung PCK, Wang HS (2022) Impact of growth hormone-releasing hormone antagonist on decidual stromal cell growth and apoptosis in vitro. Biol Reprod 106(1): 145–154. https://doi.org/10.1093/biolre/ioab214

    Article  Google Scholar 

  33. Wu HM, Chen LH, Schally AV, Huang HY, Soong YK, Leung PCK, Wang HS (2022) Impact of growth hormone-releasing hormone antagonist on decidual stromal cell growth and apoptosis in vitro. Biol Reprod 106(1): 145–154. https://doi.org/10.1093/biolre/ioab214

    Article  Google Scholar 

  34. Engel J, Emons G, Pinski J, Schally AV (2012) AEZS-108: a targeted cytotoxic analog of LHRH for the treatment of cancers positive for LHRH receptors. Expert Opin Investig Drugs. 21(6): 891–899. https://doi.org/10.1517/13543784.2012.685128

    Article  CAS  Google Scholar 

  35. Teplán I (2000) Peptides and antitumor activity. Development and investigation of some peptides with antitumor activity. Acta Biol Hung 51(1): 1–29.

    Article  Google Scholar 

  36. Okamoto S, Komura M, Terao Y, Kurisaki-Arakawa A, Hayashi T, Saito T, Togo S, Shiokawa A, Mitani K, Kobayashi E, Kumasaka T, Takahashi K, Seyama K (2017) Pneumothorax caused by cystic and nodular lung metastases from a malignant uterine perivascular epithelioid cell tumor (PEComa). Respir Med Case Rep 22:77–82. https://doi.org/10.1016/j.rmcr.2017.06.011

    Article  Google Scholar 

  37. Yuan X, Sun Y, Jin Y, Xu L, Dai H, Wang J, Zhang Z, Chen X (2019) Multiple organ benign metastasizing leiomyoma: A case report and literature review. J Obstet Gynaecol Res 45(10): 2132–2136. https://doi.org/10.1111/jog.14066

    Article  Google Scholar 

  38. Aoki K, Yamamoto T, Terauchi R, Mori T, Shirai T, Kitawaki J (2021) Benign metastasizing leiomyoma in femur and thigh with a history of uterine leiomyoma: A case report and literature review. J Obstet Gynaecol Res 47(2): 812–817. https://doi.org/10.1111/jog.14545

    Article  Google Scholar 

  39. Ohtani K, Sakamoto H, Satoh K (1992) Stimulatory effects of follicular stimulating hormone on the proliferation of ovarian cancer cell line in vitro and in vivo. Nihon Sanka Fujinka Gakkai Zasshi 44(6): 717–724.

    CAS  Google Scholar 

  40. Enomoto M, Mori T, Park MK (2001) GnRH agonist Buserelin affects colony-forming efficiency of HHUA and Jurkat cells. Biochem Biophys Res Commun 289(5): 1180–1187. https://doi.org/10.1006/bbrc.2001.6131

    Article  CAS  Google Scholar 

  41. Chamson-Reig A, Pignataro OP, Libertun C, Lux-Lantos VA (1999) Alterations in intracellular messengers mobilized by gonadotropin-releasing hormone in an experimental ovarian tumor. Endocrinology 140(8): 3573–3580. https://doi.org/10.1210/endo.140.8.6909

    Article  CAS  Google Scholar 

  42. Sorianello EM, Fernandez MO, Catalano PN, Mongiat LA, Somoza GM, Libertun C, Lux-Lantos VA (2005) Differential gonadotropin releasing hormone (GnRH) expression, autoregulation and effects in two models of rat luteinized ovarian cells. Life Sci 77(17): 2141–2155. https://doi.org/10.1016/j.lfs.2005.03.018

    Article  CAS  Google Scholar 

  43. Connor JP, Buller RE, Conn PM (1994) Effects of GnRH analogs on six ovarian cancer cell lines in culture. Gynecol Oncol 54(1): 80–86. https://doi.org/10.1006/gyno.1994.1170

    Article  CAS  Google Scholar 

  44. Slotman BJ, Poels LG, Rao BR (1989) A direct LHRH-agonist action on cancer cells is unlikely to be the cause of response to LHRH-agonist treatment. Anticancer Res 9(1): 77–80.

    CAS  Google Scholar 

  45. Maruuchi T, Sugiyama T, Kataoka A, Nishida T, Yakushiji M (1998) Effects of a gonadotropin-releasing hormone agonist on rat ovarian adenocarcinoma cell lines in vitro and in vivo. Jpn J Cancer Res 89(9): 977–983. https://doi.org/10.1111/j.1349-7006.1998.tb00657.x

    Article  CAS  Google Scholar 

  46. Ohtani K (1990) Effects of gonadotropin on the growth of malignant ovarian neoplasms assessed by subrenal capsule assay. Nihon Sanka Fujinka Gakkai Zasshi 42(6): 579–585.

    CAS  Google Scholar 

  47. Ataya KM, Palmer KC, Blacker CM, Moghissi KS, Mohammad SH (1988) Inhibition of rat ovarian [3H]thymidine uptake by luteinizing hormone-releasing hormone agonists: a possible mechanism for preventing damage by cytotoxic agents. Cancer Res 48(24 Pt 1):7252–7256.

    CAS  Google Scholar 

  48. Borovskaya TG, Timina EA, Perova AV, Pakhomova AV, Shchemerova YA, Gol’dberg VE (2007) Pharmacological correction of etoposide ovariotoxicity. Bull Exp Biol Med 143(5): 614–616. https://doi.org/10.1007/s10517-007-0196-6

    Article  CAS  Google Scholar 

  49. Senra JC, Roque M, Talim MCT, Reis FM, Tavares RLC (2018) Gonadotropin-releasing hormone agonists for ovarian protection during cancer chemotherapy: systematic review and meta-analysis. Ultrasound Obstet Gynecol 51(1): 77–86. https://doi.org/10.1002/uog.18934

    Article  CAS  Google Scholar 

  50. Waxman JH, Ahmed R, Smith D, Wrigley PFM, Gregory W, Shalet S, Crowther D, Rees LH, Besser GM, Malpas JS, Lister TA (1987) Failure to preserve fertility in patients with Hodgkin’s disease. Cancer Chemother Pharmacol 19(2): 159–162. https://doi.org/10.1007/BF00254570

    Article  CAS  Google Scholar 

  51. Chen H, Xiao L, Li J, Cui L, Huang W (2019) Adjuvant gonadotropin-releasing hormone analogues for the prevention of chemotherapy-induced premature ovarian failure in premenopausal women. Cochrane Database Syst Rev 3(3): CD008018. https://doi.org/10.1002/14651858.CD008018.pub3

    Article  Google Scholar 

  52. Elgindy E, Sibai H, Abdelghani A, Mostafa M (2015) Protecting Ovaries During Chemotherapy Through Gonad Suppression: A Systematic Review and Meta-analysis. Obstet Gynecol 126(1): 187–195. https://doi.org/10.1097/AOG.0000000000000905.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Fundamental Scientific Research Programs for 2022–2024 “The study of morphological and molecular features of organopathies at isolated and combined effects of leading metabolic risk factors of chronic non-communicable diseases” (subject code FGMU-2022-0030, state registration no. 122032300164-6) and by Russian State Budget Funded Project of ICBFM SB RAS 1.6.12. “Fundamentals of health saving”. The work was performed using the equipment of the Proteomic Analysis Center for Collective Use, supported by the funding from the Russian Ministry of Education and Science (agreement no. 075-15-2021-691). The authors did not receive financial support from manufacturers of equipment, reagents and drugs.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and experimental design (I.V.M., E.L.L.); data collection and processing (I.V.M., V.I.M., E.L.L.); writing the manuscript (I.V.M., A.K.P., E.L.L.); editing (I.V.M., A.K.P., V.I.M., E.L.L.).

Corresponding author

Correspondence to I. V. Maiborodin.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Polyanovsky

Russian Text © The Author(s), 2022, published in Rossiiskii Fiziologicheskii Zhurnal imeni I.M. Sechenova, 2022, Vol. 108, No. 11, pp. 1393–1409https://doi.org/10.31857/S0869813922110061.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maiborodin, I.V., Pichigina, A.K., Maiborodina, V.I. et al. Physiological Aspects of the Application of Gonadotropin-Releasing Hormone Agonists in Clinical and Experimental Obstetrics and Gynecology. J Evol Biochem Phys 58, 1865–1878 (2022). https://doi.org/10.1134/S0022093022060163

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093022060163

Keywords:

Navigation