Skip to main content
Log in

IMPACT ONTO THE BOUNDARY LAYER ON THE AIRFOIL OF A SMALL-SCALE AIRCRAFT SYSTEM WITH THE USE OF A WAVY SURFACE. PROBLEMS AND PROSPECTS (REVIEW)

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

A method is proposed to improve the aerodynamic performance of small-scale aircraft systems. The method is based on fundamental gas-dynamic phenomena, such as local separation of the boundary layer accompanied by the formation of the so-called separation bubbles, separation of the turbulent boundary layer, and flow stall from the leading edge of the airfoil, which change the entire flow structure around the body. Publications where the relationship of these phenomena is established and those that describe a control method eliminating the adverse consequences of flow separation with the use of a wavy surface of the airfoil are reviewed. The method is simple in implementation and offers many prospects. The areas of its applicability are determined, and the criteria of optimizing the wavy surface of the airfoil for particular operation conditions are provided. Results of investigations are reported, which show that the use of a wavy surface of wings or blades of flying vehicles can improve their aerodynamic characteristics. Various structural elements of the boundary layer are noted, such as local separation bubbles or a global separation region, and the criteria of their emergence are given, which assist in verification of numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

REFERENCES

  1. G. G. Suraj, G. M. Mangesh, and P. M. Jawandhiya, “Review of Unmanned Aircraft System (UAS)," Intern. J. Adv. Res. Comput. Engng Technol. 2 (4), 1646–1658 (2013).

    Google Scholar 

  2. A. C. Watts, V. G. Ambrosia, and E. A. Hinkley, “Unmanned Aircraft Systems in Remote Sensing and Scientific Research: Classification and Considerations of Use," Remote Sens. 4, 1671–1692 (2012).

    Article  ADS  Google Scholar 

  3. A. G. Korchenko and O. S. Ilyash, “Generalized Classification of Unmanned Aircraft Systems," Zb. Nauk. Prats Kharkiv. Un-tu Povitryan. Sil, No. 4, 27–36 (2012).

    Google Scholar 

  4. H. Penner and F. Herzog, Faszination Ultraleichtfliegen (Motorbuch Verlag, Stuttgart, 2011).

    Google Scholar 

  5. H. Schlichting, Boundary Layer Theory, McGraw-Hill, New York (1979).

    MATH  Google Scholar 

  6. A. V. Boiko, G. R. Grek, A. V. Dovgal, and V. V. Kozlov, Onset of Turbulence in Near-Wall Flows (Nauka, Novosibirsk, 1999) [in Russian].

    MATH  Google Scholar 

  7. M. Gaster, The Structure and Behavior of Separation Bubbles L., 1969. (Rep. / Aeronaut. res. council rep. and memoranda; No. 3595).

  8. I. Tani, “Low-Speed Flows Involving Bubble Separations," Progr. Aeronaut. Sci. 5, 70–103 (1964).

    Article  ADS  Google Scholar 

  9. P. B. Lissman, “Low-Reynolds-Number Airfoil," Annual Rev. Fluid Mech. 15, 223–239 (1983).

    Article  ADS  Google Scholar 

  10. J. W. Ward, “The Behavior and Effects of Laminar Separation Bubbles on Airfoils in Incompressible Flow," J. Roy. Aeronaut. Soc. 67, 783–790 (1983).

    Article  Google Scholar 

  11. A. Raspet, J. J. Cornish, and G. D. Brayant, “Delay of the Stall by Suction Through Distributed Perforations," Aeronaut. Engng Rev. 15 (8), 32–39 (1956).

    Google Scholar 

  12. K. B. M. Q. Zaman and D. J. McKinzie, “Control of Laminar Separation Over Airfoils by Acoustic Excitation," AIAA J. 29, 1075–1083 (1991).

    Article  ADS  Google Scholar 

  13. T. M. Grundy, G. P. Keefe, and M. V. Lowson, “Effects of Disturbances on Low Re Airfoil Flows," in Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications, Reston (AIAA, 2001), pp. 91–113.

  14. I. D. Zverkov, V. V. Kozlov, and A. V. Kryukov, “Influence of Wind Tunnel Freestream Turbulence Level on Boundary-Layer Separation," Teplofiz. Aeromekh. 18 (2), 213–224 (2011) [Thermophys. Aeromech. 18 (2), 203–214 (2011)].

    Article  ADS  Google Scholar 

  15. A. E. Winkelmann and J. B. Barlow, “A Flowfield Model for a Rectangular Planform Wing beyond Stall," AIAA J. 18 (8), 1006–1008 (1980).

    Article  ADS  Google Scholar 

  16. Yu. A. Kolmakov, Yu. A. Ryzhov, G. I. Stolyarov, and V. G. Tabachnikov, “Investigation of the Flow Structure around a Rectangular Wing \(\lambda =5\) at High Angles of Attack," Trudy TsAGI, No. 2290, 84–89 (1985).

  17. Yu. A. Ryzhov, G. I. Stolyarov, and V. G. Tabachnikov, “Critical Regimes of Reconstruction of the Structure of the Subsonic Unsteady Flow around a Rectangular Wing," Uch. Zap. TsAGI 27 (3/4), 3–12 (1996).

  18. M. A. Golovkin, V. P. Gorban, E. V. Simuseva, and A. N. Stratonovich, “Flow around a Rectangular Wing under Steady and Quasi-Steady External Conditions," Uch. Zap. TsAGI18 (3), 1–12 (1987).

    Google Scholar 

  19. B. Yu. Zanin, “Hysteresis of a Separated Variable-Velocity Flow about a Straight-Wing Model," Prikl. Mekh. Tekh. Fiz. 38 (5), 80–84 (1997) [J. Appl. Mech. Tech. Phys. 38 (5), 724–727 (1997)].

    Article  ADS  Google Scholar 

  20. A. E. Winkelmann, “Flow Field Studies Behind a Wing at Low Reynolds Number," AIAA Paper No. 90-1471 (Washington, 1990).

  21. H. Bippes, U. Jacob, and M. Turk, “Experimental Investigations of the Separated Flow Around a Rectangular Wing: Forschungsbericht," Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt. No. 8112. S. l., 1981.

  22. H. Bippes, “Experimental Investigation of Topological Structures in Three-Dimensional Separated Flow," in Boundary-Layer Separation (Springer-Verlag, Berlin 1987), pp. 379–382.

  23. M. Tobak and D. J. Peake, “Topological Structures on Three-Dimensional Separated Flows,” AIAA Paper No. 81-1260.

  24. V. Dallman, “Topological Structures on Three-Dimensional Vortex Flow Separation," AIAA Paper No. 83-1735.

  25. D. Weihs and J. Katz, “Cellular Patterns in Poststall Flow over Unswept Wings," AIAA J. 21 (12), 1757–1759 (1983).

    Article  ADS  Google Scholar 

  26. B. Yu. Zanin, V. V. Kozlov, and V. G. Proskryanov, “Structure of Turbulent Separation on a Non-Swept Wing under Different Flow Conditions," Uch. Zap. TsAGI 30 (1/2), 77–83 (1999).

    Google Scholar 

  27. A. V. Boiko, A. V. Dovgal, B. Yu. Zanin, and V. V. Kozlov, “Three-Dimensional Structure of Separated Flows on Wings (Review)," Teplofiz. Aeromekh. 3 (1), 1–14 (1996) [Thermophys. Aeromech. 3 (1), 1–13 (1996)].

    Google Scholar 

  28. I. D. Zverkov and B. Yu. Zanin, “Wing Form Effect on Flow Separation," Teplofiz. Aeromekh. 10 (2), 205–213 (2003) [Thermophys. Aeromech. 10 (2), 197–204 (2003)].

    Google Scholar 

  29. V. V. Kozlov, I. D. Zverkov, B. Yu. Zanin, et al., “Experimental and Theoretical Investigation of Boundary Layer Perturbations on a Low-Aspect-Ratio Wing," Teplofiz. Aeromekh. 13 (4), 551–560 (2006) [Thermophys. Aeromech. 13 (4), 507–514 (2006)].

    Article  ADS  Google Scholar 

  30. V. V. Kozlov, I. D. Zverkov, B. Yu. Zanin, et al., “Development of Laminar-Separating-Flow Perturbations on a Wavy Wing," Teplofiz. Aeromekh. 14 (3), 343–351 (2007) [Thermophys. Aeromech. 14 (3), 329–336 (2007)].

    Article  ADS  Google Scholar 

  31. I. D. Zverkov, B. U. Zanin, and V. V. Kozlov, “Disturbances Growth in Boundary Layers on Classical and Wavy Surface Wing," AIAA J. 46 (12), 3149–3158 (2008).

    Article  ADS  Google Scholar 

  32. P. Watts and F. E. Fish, “The Influence of Passive, Leading Edge Tubercles on Wing Performance," in Proc. of the 12th Intern. Symp. on Unmanned Untethered Submersible Technology (Autonomous Undersea Systems Inst., Durham, 2001).

  33. D. S. Miklosovic, M. M. Murray, L. E. Howle, and F. E. Fish, “Leading-Edge Tubercles Delay Stall on Humpbuck Whale (Megaptera Novaeangliae) Flippers," Phys. Fluids 16 (5), 39–42 (2004).

    Article  ADS  Google Scholar 

  34. H. Johari, C. Henoch, D. Custodio, and A. Levshin, “Effects of Leading-Edge Protuberances on Airfoil Performance," AIAA J. 45 (11), 2634–2641 (2007).

    Article  ADS  Google Scholar 

  35. K. L. Hansen, R. M. Kelso, and B. B. Dally, “Performance Variations of Leading-Edge Tubercles for Distinct Airfoil Profiles," AIAA J. 46 (1), 185–194 (2011).

    Article  ADS  Google Scholar 

  36. B. Stein and M. M. Murray, “Stall Mechanism Analysis of Humpbuck Whale Flipper Models," Proc. Unmanned Untethered Submersible Technol. 5, (2005).

  37. D. S. Miklosovic and M. M. Murray, “Experimental Evaluation of Sinusoidal Leading Edges," J. Aircraft. 44, 1404–1407 (2007).

    Article  Google Scholar 

  38. M. J. Stanway, Hydrodynamic Effects of Leading-Edge Tubercles on Control Surfaces and in Flapping Foil Propulsion, Master’s Thesis (Cambridge, 2008).

  39. E. A. Nierop, S. Alben, and M. P. Brenner, “How Bumps on Whale Flippers Delay Stall: An Aerodynamic Model," Phis. Rev. Lett. 100, 054502 (2008).

    Article  ADS  Google Scholar 

  40. F. E. Fish, P. W. Weber, M. M. Murray, and L. E. Howel, “Marine Applications of the Biomimetic Humpback Whale Flipper," Marine Technol. Soc. J. 45 (4), 198–207 (2011).

    Article  Google Scholar 

  41. K. L. Hansen, R. M. Kelso, and B. B. Dally, “An Investigation of Three-Dimensional Effects on the Performance of Tubercles at Low Reynolds Numbers," in Proc. of the 17th Australasian Fluid Mechanics Conf., Auckland (New Zealand), 5–9 Dec. 2010 (Curran Assoc., N. Y., 2010), pp. 5–9.

  42. N. Rostamzadeh, R. M. Kelso, B. B. Dally, and K. L. Hansen, “The Effect of Undulating Leading-Edge Modifications on NACA 0021 Airfoil Characteristics," Phys. Fluids 25, 117101 (2013).

    Article  ADS  Google Scholar 

  43. H. Chen, C. Pan, and J. Wang, “Effects of Sinusoidal Leading Edge on Delta Wing Performance and Mechanism," Sci. China Technol. Sci. 56 (3), 772–779 (2013).

    Article  ADS  Google Scholar 

  44. J. Joseph, S. Sridhar, and S. Alangar, “A Comparison on the Effect of Leading Edge Tubercle on Straight and Swept Wing at Low Reynolds Number," in Proc. of the 46th Nat. Conf. on Fluid Mechanics and Fluid Power (FMFP), Coimbatore (India), 9–11 Dec. 2019 (PSG College of Technol., Coimbatore, 2019), No. 64.

  45. Z. Weia, T. H. Newc, L. Liana, and Y. Zhangd, “Leading-Edge Tubercles Delay Flow Separation for a Tapered Swept-Back Wing at Very Low Reynolds Number," Ocean Engng. 181 (1), 173–184 (2019).

    Article  Google Scholar 

  46. T. H. New, Z. Y. Wei, and Y. D. Cui, “Aerodynamic Performance and Surface Flow Structures of Leading-Edge Tubercled Tapered Swept-Back Wings," AIAA J. 56 (1), 423–431 (2018).

    Article  ADS  Google Scholar 

  47. C. M. Kobk and M. O. L. Hansen, “Numerical study of wavy blade section for wind turbines," J. Phys.: Conf. Ser. 753, 022039 (2016). DOI: 10.1088/1742-6596/753/2/022039.

    Article  Google Scholar 

  48. C.-J. Bai, Y.-Y. Lin, S.-Y. Lin, and W.-C. Wang, “Computational Fluid Dynamics Analysis of the Vertical Axis Wind Turbine Blade with Tubercle Leading Edge," J. Renewable Sustainable Energy7, 033124 (2015). DOI: 10.1063/1.4922192.

    Article  Google Scholar 

  49. W. Shi, R. Rosli, M. Atlar, et al., “Hydrodynamic Performance Evaluation of a Tidal Turbine with Leading-Edge Tubercles," Ocean Engng. 117, 246–253 (2016).

    Article  Google Scholar 

  50. A. Seeni, P. Rajendran, and H. A. Kutty, “A Critical Review on Tubercles Design for Propellers," IOP Conf. Ser.: Materials Sci. Engng. 370, 012015 (2018). DOI: 10.1088/1757-899X/370/1/012015.

    Article  Google Scholar 

  51. F. R. Butt and T. Talha, “Numerical Investigation of the Effect of Leading-Edge Tubercles on Propeller Performance," AIAA J. Aircraf. 56 (3), 1–15 (2019).

    Article  Google Scholar 

  52. I. D. Zverkov, V. V. Kozlov, and A. V. Kryukov, “Transitional Flow Structure on Classic and Wavy Wings at Low Reynolds Number," Progr. Flight Phys. 7, 247–260 (2014).

    Google Scholar 

  53. I. D. Zverkov and A. V. Kryukov, “Investigation of Flow Separation on a Wavy Wing by Thermal Imaging," in Abstr. All-Russia Workshop “Fundamental Problems of MEMS and Nanotechnologies," Novosibirsk, April 15–16, 2009 (Sibstrin, Novosibirsk, 2009), p. 21.

  54. I. D. Zverkov, V. V. Kozlov, and A. V. Kryukov, “Effect of Waviness on the Boundary Layer Structure and Aerodynamic Characteristics of a Finite-Span Wing," Vestn. Novosib. Gos. Univ., Ser. Fizika6 (2), 26–42 (2011).

  55. I. D. Zverkov, V. V. Kozlov, and A. V. Kryukov, “Improvement of the Aerodynamic Characteristics of the Wing of a Small-Scale Vehicle," Dokl. Akad. Nauk 440 (6), 1–4 (2011).

    Google Scholar 

  56. I. D. Zverkov, V. V. Kozlov, and A. V. Kryukov, “Experimental Research of the Boundary Layer Structure at Near-Critical Angles of Attack for the Classical and Wavy Wings," Progr. Flight Phys. 5, 252–265 (2012).

    Google Scholar 

  57. I. D. Zverkov, V. V. Kozlov, and A. V. Kryukov, “Specific Features of the Flow around Finite-Span Non-Swept and Swept Wings with Smooth and Wavy Surfaces in the Range of the Critical Angles of Attack," Vestn. Novosib. Gos. Univ., Ser. Fizika 4 (2), 26–42 (2012).

    Google Scholar 

  58. I. D. Zverkov, V. V. Kozlov, and A. V. Kryukov, “Flow around Wing Models with Smooth and Wavy Surfaces at Sweep Angles of 0, 15, 30, and 45° in the Range of the Critical Angles of Attack," in Abstr. 9th Workshop SibNIA “Aerodynamics and Flight Dynamics of Vehicles," Novosibirsk, February 9–11, 2011 (SibNIA, Novosibirsk, 2011), pp. 24–25.

  59. I. D. Zverkov, V. V. Kozlov, and A. V. Kryukov, “Method for Controlling the Aerodynamic Characteristics of the Lifting Surface and Lifting Surface," RF Patent 2412864, MPK V 64 S 21/10, V 64 S 3/30, No. 2009127202/11; Appl. 14.07.2009; Publ. 27.02.2011, Bul. No. 6.

  60. I. D. Zverkov and A. V. Kryukov, “Varioform Sectioned Wing for an Unmanned Aircraft System," in Proc. All-Russia Conf. of Young Specialists and Students “Promising Technologies of Aircraft Building in Russia and in the World," Novosibirsk, June 1–2, 2010 (SibNIA, Novosibirsk, 2010), pp. 6–10.

  61. A. V. Kryukov, I. D. Zverkov, and G. U. Evtushok, “The use of the Varioform Wing for Control of Surface Flow and Flight," AIP Conf. Proc. 1893, 030095 (2017). DOI: 10.1063/1.5007553.

  62. I. D. Zverkov, A. V. Kryukov, G. R. Grek, et al., “Determination of Wavy Surface Parameters for the Wing of a Small-Scale Aircraft System," Vestn. Novosib. Gos. Univ., Ser. Fizika 10 (3), 5–18 (2015).

    Google Scholar 

  63. M. Drela, “XFOIL: An Analysis and Design System for Low Reynolds Number Airfoils," in Low Reynolds Number Aerodynamics Berlin; Heidelberg: Springer, 1989. (Lecture notes engng; V. 54).

  64. I. D. Zverkov, A. V. Kryukov, and G. Yu. Evtushok, “Methods of Determining the Boundary Layer Characteristics of the Varioform Section Wing," AIP Conf. Proc. 2027, 030097 (2018). DOI: 10.1063/1.5065191.

  65. I. D. Zverkov and A. V. Kryukov, “Formation of Local Separation Zones on Wings with a Rigid and Varioform Wavy Surface," Teplofiz. Aeromekh. 27 (6), 901–912 (2020) [Thermophys. Aeromech. 27 (60, 857–868 (2020)]. DOI: 10.1134/S0869864320060074.

    Article  ADS  Google Scholar 

  66. A. V. Kryukov, I. D. Zverkov, and G. U. Evtushok, “On the Measurement of Aerodynamic Characteristics of Airfoils with Laminarized Profiles at Low Reynolds Numbers," AIP Conf. Proc. 2125, 030039 (2019). DOI: 10.1063/1.5117421.

  67. A. V. Kryukov, I. D. Zverkov, and G. U. Evtushok, “Application of Local Boundary Layer Suction for Laminarized Profiles at Low Reynolds Numbers," AIP Conf. Proc. 2125, 030049 (2019). DOI: 10.1063/1.5117431.

  68. M. A. Shorbagy, B. El-Hadidi, G. El-Bayoumi, et al., “Experimental Study on Bio-Inspired Wings with Tubercles", AIAA Paper N 2019-0848. DOI: 10.2514/6.2019-0848.

  69. A. Skillen, A. Revell, A. Pinelli, et al., “Flow Over a Wing with Leading Edge Undulations," AIAA J. 53 (2), 464–472 (2015). DOI: 10.2514/1.J053142.

    Article  ADS  Google Scholar 

  70. N. Rostamzadeh, R. M. Kelso, and B. Dally, “A Numerical Investigation into the Effects of Reynolds Number on the Flow Mechanism Induced by a Tubercled Leading Edge," Theor. Comput. Fluid Dynamics 31, 1–32 (2017). DOI: 10.1007/s00162-016-0393-x.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. D. Zverkov.

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2021, Vol. 62, No. 3, pp. 180-198. https://doi.org/10.15372/PMTF20210318.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zverkov, I.D., Kryukov, A.V. IMPACT ONTO THE BOUNDARY LAYER ON THE AIRFOIL OF A SMALL-SCALE AIRCRAFT SYSTEM WITH THE USE OF A WAVY SURFACE. PROBLEMS AND PROSPECTS (REVIEW). J Appl Mech Tech Phy 62, 503–518 (2021). https://doi.org/10.1134/S0021894421030184

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894421030184

Keywords

Navigation