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We critically address the recent experiment by L. Chen et al. [Science 382, 907 (2023)] on nonequilibrium
transport and noise in a strange metal YbRh2Si2 patterned into the nanowire shape. In the long device,
resistivity, differential resistance and current noise data seem to be consistent allowing us to extract
electron-phonon coupling and the temperature dependence of electron-phonon scattering length. The obtained
values can be reconciled with the experimental data for the short device only assuming the significant
contact resistance. We discuss its possible origin as due to the current redistribution between YbRh2Si2
and its gold covering, and reveal that this redistribution contact resistance should be proportional to the
YbRh2Si2 resistivity. We also discuss some subtleties of the noise measurements. Overall, neglecting electron-
phonon energy relaxation even in the shortest devices is arguable so that the observed shot noise suppression
can hardly be attributed to the failure of quasiparticle concept.
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I. Introduction. The origin of strange metal be-
havior which is manifested in the linear temperature (T )
dependence of resistivity down to lowest T in some ma-
terials [1–5], remains without generally accepted the-
oretical explanation [6–12]. On the experimental side,
beyond common resistivity measurements novel ap-
proaches [13–15] are required. In particular, the recent
paper by Liyang Chen et al. [15] reports on the mea-
surements of shot noise in the heavy fermion strange
metal YbRh2Si2 patterned into the nanowire shape. The
authors claim that the observed shot noise suppression
can not be attributed to the electron-phonon energy re-
laxation in a standard Fermi liquid model but rather
indicates the failure of quasiparticle concept. This in-
terpretation has been criticized [16, 17] which motivated
us to consider in the present manuscript the peculiar-
ities of the nonequilibrium transport approach to the
study of strange metals. In our letter we show that
electron-phonon scattering is most likely strong enough
to suppress shot noise even in the presented short de-
vices which makes the statement on the failure of quasi-
particle concept [15] arguable. At the same time, resis-
tance and noise data from the long device can be con-
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sistently explained and thus provide important informa-
tion about electron-phonon coupling which is essential
for further transport experiments.

Figure 1a demonstrates the sketch of studied de-
vices. Patterned from a t = 60 nm thick YbRh2Si2
film (gray) with resistivity ρ, grown on germanium sub-
strate, they are represented by nanowire-shaped con-
strictions of length L and width w, connected to source
and drain pads. As shown by yellow shading, these
two pads are additionally covered with 200 nm of gold.
We note that at low bath temperature (T0) the gold
conductivity is approximately 10 times higher than
that of YbRh2Si2 (at 3K). Bottom part of Fig. 1a
shows schematically the current density vector both
in YbRh2Si2 and in gold covering in the region where
current redistributes between the two layers. This re-
gion extends for the so-called current transfer length λ

depending on the quality of the YbRh2Si2/Au inter-
face which we quantify with the interface conductance
per unit area, σint. Overall, the authors provide data
for three devices with short constrictions, L � 1μm,
further refered to as short devices, and for one device
with long constriction, L = 28μm, further referred to
as long device. The widths of all nanowires range from
140 to 300 nm. We estimate geometric dimensions of all
constrictions from the available scanning electron mi-
crograph images. As we argue in this manuscript, ge-
ometry of the devices may require taking into account
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the contribution to the measured resistance and noise
not only from the nanowires themselves but also from
the significant part of the pads.

Fig. 1. (Color online) Device geometry and measure-
ment setup. (a) – Schematic representation of a device.
YbRh2Si2 film t = 60 nm thick (gray) is patterned into a
constriction connecting two pads. These pads are addition-
ally covered with 200 nm of gold (yellow). The length and
the width of the constriction are L and w, respectively.
Interface between YbRh2Si2 and gold is characterized by
conductivity σint, current transfer length is λ. (b) – Equiv-
alent circuit of noise measurement setup. (c) – Geometry
used in numerical modelling. We calculate the total cur-
rent through the constriction, i, in response to the applied
bias voltage, v

II. Long device.
A. Differential resistance. We start our discussion

with the analysis of experimental data for the long de-
vice. Here, the central constriction is approximately 30

times longer than that for three short devices so that
the possible effect of the interface may be most likely ne-
glected. Below we show that electron-phonon scattering
length in YbRh2Si2 is le−ph(3K) ≈ 1μm and decreases
with increasing temperature. This ensures that in the
presence of bias current I electron system in the long
constriction is described by position-independent elec-
tronic temperature Te(I) everywhere besides short re-
gions near the pads. At all T0 this dependence can be ob-
tained using a standard procedure. From the differential
resistance data provided in Supplementary Materials
Fig. S3B [15], we extract R = V/I at T0 = 3, 5 and 7K.
Further, attributing the growth of R(I) with increasing
current to the increase of Te, we extract Te(I). Here,
we use the fact that the T -dependence of the normal-
ized resistance of the devices is demonstrated to be the
same as that for the unpatterned film, see Fig. 1C [15].
The obtained curves Te(I) are shown in Fig. 2a. With-
out noise measurements, these data already allow one to
estimate electron-phonon coupling which describes the
power flow from electron to phonon subsystem via

Pe−ph = VΣe−ph(T
n
e − T n

ph),

where V is the system volume, Tph is the phononic
temperature and the exponent n typically varies in the
range n ≈ 3− 5 [18]. The devices are patterned on crys-
talline germanium substrates ensuring Tph = T0. In a
steady state Pe−ph = PJ , where PJ is the released Joule
heat power so that

PJ = VΣe−ph(T
n
e − T n

0 ). (1)

In Figure 2b we show that n = 4.7 fits the data perfectly
with Σe−ph = 9.6·108 W/K4.7m3 (we take w = 300 nm).
From here, we extract the T -dependence of the electron-
phonon scattering length using [19]

le−ph = L
[L/nT n−2VΣe−phR(T )

]1/2
,

where L = 2.44 · 10−8 WΩK−2 is the Lorenz number.
The result is shown in Fig. 2c and in the given temper-
ature range can be reasonably approximated as le−ph ∝
∝ T−1.7, see the dashed line. Importantly, le−ph(3K) ≈
≈ 1.4μm ensuring the possibility to introduce position-
independent electronic temperature Te(I) which will be
further used in noise treatment.

B. Nonequilibrium noise. Before discussing nonequi-
librium noise of the long device, we note some general
details of the noise measurements. In the setup used
in [15], see Fig. 1b for the schematic circuit, the voltage
noise before amplification is determined by two contri-
butions,

SV (I) =

[
4kBTe(I)

Rdiff(I)
+ Samp

]
R2

diff(I), (2)

where Rdiff = dV/dI is the differential resistance of
the device, Te is its average electronic temperature, the
first term comes from the current noise of the device
itself, the second term is defined by the parasitic in-
put current noise of the amplifiers, Samp, and SV (0)

is the voltage noise in equilibrium. Note that in the
nonlinear regime Rdiff depends on I so that Samp con-
tributes to the measured excess voltage noise. Whether
one can neglect Samp or not, depends on the interplay
between the two terms in (2). Therefore, along with de-
termining the gain it is also the goal of calibration to
get the magnitude of amplifier noise. Typically, when
one uses homemade voltage amplifier at liquid helium
temperature, its input current noise is on the order of
10−27 A2/Hz [20–22] where the precise value depends on
the used transistor, operating frequency and device re-
sistance [23]. The authors of [15] use room-temperature
commercial preamplifiers, low-noise LI-75 and SR-560
which is usually not used in noise measurements. One
can therefore expect Samp � 10−25 A2/Hz. We note that
this current noise can not be extracted from the setup
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Fig. 2. (Color online) Nonequilibrium response of the long nanowire. (a) – Electronic temperature of the nanowire as a func-
tion of bias current. (b) – Electron-phonon power flow obeys P = VΣe−ph(T

4.7
e − T 4.7

ph ) with Σe−ph = 9.6 · 108 W/K4.7m3.
(c) – Electron-phonon scattering length as a function of temperature. Dashed line is le−ph ∝ T−1.7. (d) – Excess voltage
noise spectral density of the device, ΔSV = SV (I) − SV (0), as a function of bias current. Symbols represent the data
from the experiment [15]. Both dotted and solid lines correspond to Σe−ph = 9.6 · 108 W/K4.7m3 but with Samp = 0 and
Samp = 5 · 10−25 A2/Hz, respectively

calibration discussed in Supplementary Material Sec-
tion 2 [15]. Namely, the calibration was performed by
detecting the room temperature thermal noise of a vari-
ety of resistors, see Supplementary Material Fig. S1. At
room temperature, the current noise of a typical used
100Ω resistor is 1.6 ·10−22 A2/Hz and by far exceeds the
expected value of Samp so that the presented calibration
procedure is absolutely helpless in its determination. At
the same time, the current noise of a strange metal long
device cooled down to 5K and with a resistance of ap-
proximately 300Ω is 9 · 10−25 A2/Hz which may easily
be comparable to the expected value of Samp. In other
words, the setup calibration is performed for the val-
ues of current noise which are two orders of magnitude
greater than those utilized in the experiment.

The value of Samp in the experiment can be esti-
mated by comparison of experimental results for the
voltage fluctuations of the long device, see Supplemen-
tary Material Fig. S3A of [15], to what one can expect

based on the obtained curves Te(I) presented in Fig. 2a.
By solid lines in Fig. 2d we show the best fits to the
experimental data (symbols) of [15]. These fits are ob-
tained using (2) with Samp = 5 · 10−25 A2/Hz which
perfectly falls in the above order of magnitude expec-
tation. We emphasize that considering current noise of
the device in the form of thermal noise with electronic
temperature elevated above bath temperature in (2) is
valid in the presence of strong electron-phonon scatter-
ing. Dotted lines additionally illustrate the fits obtained
with zero preamplifier noise. Note these fits go below the
experimental data indicating contribution of the para-
sitic noise.

As a final remark, we note that the obtained above
T -independent value of Σe−ph implies the temperature
dependence of Γ = (e/kB)

2Σe−ph/σ since conductivity
changes by approximately 40% in the temperature range
from 3 to 7K. At the same time, the authors of [15] used
in their fits T -independent Γ ≈ 9 ·109 K−3m−2, see Sec-
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tion 5 in Supplementary Material. This difference may
explain the better quality of our fits for the differential
resistance.

III. Short devices.
A. Contact resistance. We now discuss the short

device (L = 660 nm) presented in the main text, see
Fig. 2A [15]. Given the width of the constriction is close
to that of the long nanowire, one might have expected
its linear response resistance at 3K to be around 6Ω.
The actual value is 36Ω demonstrating there is signifi-
cant inconsistency between formally extracted resistiv-
ities of the two devices. Note that additional data on
two more short devices presented in Supplementary Ma-
terial Fig. S5 reveal the similar discrepancy. In princi-
ple, this inconsistency can partly be attributed to the
nanoscale patterning of the devices using reactive ion
etching which inevitably damages the edges of the con-
strictions (L. Chen and D. Natelson, private commu-
nication). Figure 1(C, D) of [15] compares temperature
and magnetic field (B) behavior of the unpatterned film
with that of the nanowire-patterned device and demon-
strates similar results in terms of normalized resistances.
Therefore, while there is approximately 6-fold difference
in the resistivities we believe that the underlying physics
is still there so that damaged edges are hardly responsi-
ble for the discussed inconsistency. The authors of [15]
use Fig. 1(C, D) to claim that the total resistance of the
device is dominated by the constrictions and the pads
contribution is negligible. Below we explain that this ar-
gument is in fact incorrect and the pads contribution,
which we further refer to as contact resistance, can not
be excluded based on the observation of similar for the
film and for the patterned devices R(T ) and R(B) de-
pendences.

To illustrate the idea, we consider the geometry de-
picted in the bottom part of Fig. 1a. Further, we take
gold conductivity to be infinitely large. Upon leaving
the constriction, current starts to redistribute between
the YbRh2Si2 film and the gold cover. This redistribu-
tion stops after going distance λ deep inside the pad
along the interface. This distance is called the current
transfer length and depends on the film resistivity and
on the interface conductivity, σint. For σint = 0 cur-
rent doesn’t flow over the interface and remains com-
pletely in the YbRh2Si2 film. In this case, the contact
resistance is log-divergent with the contact size a as
R1(a) = ρ ln(2a/w)/(πt). On the other hand, if all volt-
age drop occurs across the interface between the two
layers, which happens for ρ = 0, the contact resistance is
R2(a) = 2/(πa2σint). In an infinite contact with both ρ

and σint finite, the reasonable quantitative estimate for
both the current transfer length and the contact resis-

tance is obtained from R1(λ) = R2(λ) ∼ Rcont, that
is

ρ

πt
ln

(
2λ

w

)
=

2

πλ2σint
∼ Rcont.

In Supplemental Material we provide the analytical so-
lution and demonstrate that in the limit of large enough
λ � w the above estimate reproduces the exact result
up to only a 10% correction for the logarithm argu-
ment. Importantly, the T -dependence of λ is weak and
closely follows λ ∝ ρ−1/2. Therefore, up to an unimpor-
tant log-factor the contact resistance is proportional to
the YbRh2Si2 resistivity,

Rcont ∝ ρ. (3)

As a result, observation of the identical T and B re-
sponse for the parent film and for the patterned de-
vice doesn’t ensure negligible contact resistance. We
also note that for the realistic finite-size devices contact
resistance may further be enlarged due to the factors
not considered in this idealized picture. In Supplemen-
tal Material we show that the T -dependence of linear-
response resistance for the short device presented in the
main text, see Fig. 2A [15], is reasonably approximated
using λ(3K) ≈ 280μm which is comparable to the pads
size and indicates the possible importance of current re-
distribution effect.

B. Differential resistance. Given the great difference
between the expected and the observed resistance of
short devices, we argue that the current transfer length
may exceed the dimensions of constrictions by orders of
magnitude and be comparable to or even exceed the di-
mensions of devices with pads included. To numerically
simulate the differential resistance, we choose the geom-
etry of Fig. 1c. Here, the radius of pads equals 20μm and
the current redistribution on the lateral scale of these
pads is neglected. The electrodes are indicated by thick
black lines. On the one hand, this geometry is close to
the geometry of the patterned film nearby the constric-
tion in real devices. On the other hand, the scale of
20μm is large enough to capture the nonlinearity of dif-
ferential resistance, since due to le−ph � 1μm electronic
temperature in the presence of current reaches the value
of T0 on the spatial scale of few micrometers beyond the
constriction. Additionally, crucial to the numerical cal-
culations for this highly nonuniform geometry, thus cho-
sen size is not too large to require inadequate computing
power.

We first implement our numerical approach for the
long device. Symbols in the top panel of Fig. 3a re-
produce the experimental data from the Supplemen-
tary Material Fig. S3B [15]. Solid lines are fits obtained
with Σe−ph = 6.1 · 108 W/K5m3 and n = 5 in (1)
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Fig. 3. (Color online) Numerical simulation of nonequilibrium response for both: (a) – long and (b) – short (device #3)
constrictions. Symbols in top panels reproduce the experimental results of [15] for differential resistance as a function of bias
current. Solid lines are fits obtained with numerical simulation (see text). The inset of top panel in (b) demonstrates the
T -dependence of the bias-independent contact resistance. The bottom panels demonstrate the spatial profile of electronic
temperature along the dashed line depicted in Fig. 1c with x = 0 corresponding to the center of the constriction

and the T -dependence of YbRh2Si2 resistivity ρ(T ) =

= 10.8 + 1.67T [μΩ · cm] which captures the linear-
response resistance data and fits the data of Fig. 1C [15]
with better than 10% accuracy in the temperature
range below 10K. Note that the difference between thus
obtained Σe−ph and the value extracted from Fig. 2b
is due to the slightly different power-law of electron-
phonon cooling rate. The spatial profile of electronic
temperature along the dashed line depicted in Fig. 1c is
demonstrated in the bottom panel of Fig. 3a with x = 0

corresponding to the center of the constriction.
Having extracted Σe−ph, we attempt to fit the bias

dependence of differential resistance for one of short de-
vices. For this purpose we choose the device #3 from
Supplementary Material Fig. S5E [15]. Among the over-
all presented three short devices, this is the narrowest
one so that we expect the contact resistance to be signif-
icant enough but not dominating over the constriction
resistance compared with two other short devices. Note
also that while the constriction of this device is approx-
imately two times narrower than the constriction of the
device #2 from Supplementary Material Fig. S5(A-C),
its resistance is only ≈ 30% greater which again may
indicate the significant contact resistance in all short

devices. We take the length and the width of the con-
striction in device #3 to be l = 1.3μm and w = 155 nm,
respectively; the corresponding resistivity is taken to be
the same as for the long device. Symbols in the top
panel of Fig. 3b reproduce the experimental data from
the Supplementary Material Fig. S5E [15]. Solid lines
are fits obtained with

Rdiff =
dv

di
+Radd(T ),

where v is the voltage applied between two electrodes
in Fig. 1c, i is the calculated current and Radd(T ) is
chosen as current-independent quantity to fit the linear-
response resistance for all four temperatures of interest.
Radd must include, at least, the contribution to con-
tact resistance due to current redistribution across the
imperfect YbRh2Si2/gold interface beyond the semicir-
cular pads depicted in Fig. 1c. Additional contribution
to Radd may come from finite gold resistivity and pos-
sibly present interface defects. Taking into account only
current redistribution effect, in accordance with (3) one
should expect Radd ∝ ρ. In the inset we demonstrate
the obtained Radd(T ) dependence which turns out to be
slower than ρ(T ) indicating that current redistribution
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Fig. 4. (Color online) Numerical simulation of nonequilibrium noise for the device #3. Symbols represent the data from the
experiment [15] for excess voltage noise as a function of bias current. Solid lines are fits calculated using the position-dependent
electronic temperature similar to the bottom panel of Fig. 3b (see text)

is not the only effect contributing to the contact resis-
tance. Additionally, in the bottom panel of Fig. 3b we
plot the spatial profile of electronic temperature along
the short constriction. Both bottom panels of Fig. 3 ver-
ify that electron-phonon scattering is strong enough so
that the devices can not be considered as in phase-
coherent regime which was recently analyzed theoret-
ically [24].

C. Nonequilibrium noise. Finally, we compare the ex-
perimental results for nonequilibrium noise in the short
device with what we expect based on the spatial tem-
perature profile demonstrated in Fig. 3d. By symbols in
Fig. 4 we reproduce the data for the device #3 from
Supplementary Material Fig. S5F [15]. Solid lines are
fits calculated using ΔSV = 4kBTN(dv/di). Here, TN is
the noise temperature of the part of the device depicted
in Fig. 1c and calculated using [25]

TN =

∫
T (x, y)(j ·E) dx dy∫

(j · E) dx dy
,

where j is the current density and E is the electric field
in the given point of a device. Note that in the above ex-
pression for ΔSV we neglect the nonequilibrium noise of
device regions beyond those from Fig. 1c as well as the
contribution from the amplifier noise due to the device
resistance nonlinearity. Importantly, the fits go below
the experimental data so that considering the amplifier

current noise and the contacts noise may become crucial
in interpreting the data.

IV. Conclusion. In conclusion, we have discussed
the recent strange metal experiment [15]. In the long
device, resistivity, differential resistance and current
noise data are self-consistent allowing us to extract
low-temperature electron-phonon coupling, Σe−ph =

= 9.6 · 108 W/K4.7m3, and the temperature dependence
of electron-phonon scattering length, le−ph ∝ T−1.7. In
particular, at T = 3K le−ph ≈ 1.4μm which is compa-
rable to the constriction length in short devices. This
finding demonstrates that electron-phonon scattering
most likely can not be neglected in short devices mak-
ing the statement on the failure of quasiparticle concept
in YbRh2Si2 arguable. We have also considered the pos-
sible contribution of contact resistance and amplifiers
noise to the experimental results. Overall, our findings
provide information essential for further transport ex-
periments.
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