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We derive the electrodynamic conductivity tensor for 2DESs with dc drift with account for the high-
frequency Hall effect (interaction of dc current with ac magnetic field). We demonstrate the limitations of the
quasistatic approach which neglects this effect. With the help of electrodynamic conductivity we find a novel
two-dimensional transverse electric (TE) electromagnetic mode. This mode is non-reciprocal with dispersion
ω = ku0 and manifests itself in lowering the reflection coefficient of 2DES at the resonance frequency. In
addition, we predict birefringence of an incident evanescent TE wave on a 2DES system with drift and find
hints of Cerenkov amplification in the low frequency limit. We discuss the limitng cases when the quasistatic
approach is suitable.
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Introduction. Electromagnetic (EM) waves in
isotropic dielectrics are transverse. If we introduce con-
ducting media (plasma) into a dielectric environment,
EM waves become more complex and can be described
as a superposition of TM (transverse magnetic) and
TE (transverse electric) modes. The former are com-
monly known as plasma waves, or plasmons, as they
incorporate not only oscillations of EM fields, but also
oscillations of electric charge density and current in the
conducting media. In turn, TE waves usually involve
only current, and not charge density, oscillations3).

In bulk isotropic plasmas neither TM, nor TE modes
can propagate at frequencies ω below the plasma fre-
quency ω3d even in the absence of dissipation. At the
same time, in anisotropic media this condition is greatly
relaxed. For example, bulk plasmas in a magnetic field
support helicons [1, 2], low frequency TE modes with
high Q-factor (ωτ � 1, where τ is effective charge car-
rier momentum relaxation time). Helicons were first ob-
served in sodium [3] and a year later were assosiated
with atmospheric whistlers [4], ∼ 10 kHz oscillations
that travel along the Earth’s magnetic field and can cir-
cumnavigate the Earth several times before fading.

1)Supplementary materials are available for this article
at DOI: 10.1134/S0021364024600563 and are accessible for
authorized users.

2)e-mail: petrov.as@mipt.ru
3)This statement can be easily checked from the continuity

equation iωρ = (ik, σ̂E). Usually the conductivity tensor is di-
agonal and for TE modes we immediately obtain ρ = 0.

While application of an external magnetic field is the
most straightforward way to introduce TE modes to a
plasma, it may not be the most efficient one. The less
common options include passage of a constant electric
current through the sample, which leads to formation
of ultra-low frequency galvanomagnetic waves (GMWs).
These waves were predicted by Morozov and Shubin
in 1964 [5] and observed by Kopylov in 1979 [6] in Bi
monocrystals. The term magnetic in GMW reflects the
magnetic nature of the restoring force in this wave. The
spectrum of GMWs is given by a simple relation [6]

ω = ku0 − ic2k2/4πσv, (1)

where k is the wave vector, u0 is the dc carrier drift
velocity, c is the speed of light, σv is the static Drude
volume conductivity. Plugging the typical Bi parame-
ters into Eq. (1) gives ν = Reω � 600 rad/s; Imω �
� −100 rad/s while the effective momentum relax-
ation rate 1/τ is the order of THz. In addition to this
rather unusual behavior, GMWs are intrinsically non-
reciprocal: Eq. (1) dictates that the wavevector must be
co-directional with the drift velocity, which was verified
in the experiment [6]. Notably, similar properties are
shared by thermomagnetic waves (TMWs) that propa-
gate along a temperature gradient in bulk semiconduc-
tors [7, 8], but these modes lie out of the scope of our
paper.

The two given examples (helicons and GMWs) con-
vince us that long travelpaths at low ωτ -factors repre-
sent a natural footprint of TE modes. This happens due
to the fact that the current and electric field of TE waves
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are phase-shifted by π/2, the shift being independent of
Reσ4). Thus, TE electromagnetic waves in bulk plas-
mas are remarkable objects with promising applications
due to long travelpaths.

Despite having bright properties in bulk plasmas,
TE modes are practically unexplored in two-dimensional
electron systems (2DESs). The reason for this might be
the fact that common 2DESs (with parabolic electron
dispersion) cannot support TE modes. Indeed, Fal’ko
and Khmel’nitskii showed [9] that a TE mode can prop-
agate along a 2DES only if the 2DES’s surface conduc-
tivity σ has capacitive nature, i.e.,

Imσ(ω) < 0, (2)

temporal dependence e−iωt is assumed throughout the
paper. Only recently, in 2007, S. A. Mikhailov and
K. Ziegler noticed [10] that unique electron-hole plasma
in graphene can be used to fulfill this seemingly improb-
able condition and thus open the prospect for TE mode
observation. This mode was experimentaly probed in
graphene nanostructure several years later [11]. Further
works studied graphene TE plasmons in the presence of
dc drift pependicular to the wave vector [12, 13].

Still, TE modes in anisotropic 2DESs with parabolic
spectrum are scarcely investigated. Thus, we are aware
only of some signatures for existence of transverse mag-
netosound waves in viscous 2D electronic fluids [14–16].

In this paper we demonstrate that the interaction
of dc charge carrier drift in a 2DES with TE wave’s
magnetic field (which can be called the high-frequency
Hall effect) has a pronounced impact on the 2DES’s
ac conductivity and electromagnetic properties. We de-
rive the corresponding electrodynamic conductivity ten-
sor and predict the formation of 2D galvanomagnetic
waves analogous to (1). We establish field distribution
of these modes and examine the response of 2DESs to
exciting radiation with account for this interaction. In
addition, we show that this effect is responsible for bire-
fringence of an evanescent TE wave incident on a 2DES
and find hints of Cerenkov amplification in the low fre-
quency limit.

1. Theoretical model. We consider an infinite
two-dimensional electron system (2DES) with homo-
geneous carrier density n0 that is sandwiched between
two materials with permittivities εi and permeabilities
μi, i = 1, 2. A constant dc current j0 = n0u0 flows across
the 2DES (Fig. 1).

1.1. 2DES electromagnetic conductivity in the pres-
ence of drift. A general property of any system that en-

4)This fact can be proved by combining the Maxwell’s induction
law and Ampere’s law to give q2E = 4πiω/c2j for TE waves.

Fig. 1. (Color online) Schematic view of a host system for
two-dimensional GMW. A 2DES with homogeneous car-
rier density is subject to electrical potential gradient in
x-direction, which leads to formation of dc current with
carrier drift velocity u0. The structure is sandwiched be-
tween dielectrics with permittivities ε1, ε2 and permeabili-
ties μ1, μ2. The main part of the paper deals with the case
ε1 = ε2, μ1 = μ2 = 1 for simplicity

codes its response to external electromagnetic fields and
thus carries information about the system’s eigenmodes
is the dielectric function or, equivalently, conductivity.
We derive the conductivity of the system under consid-
eration from the linearized Euler’s equation

−iω̃mvω = FL +m(u0,∇)vω , (3)

where FL is the Lorentz force, m is the electron effec-
tive mass, ω̃ = ω+ i/τp, 1/τp is the effective carrier mo-
mentum relaxation rate with respect to collisions with
phonons or impurities, and vω is the temporal Fourier
component of the carrier velocity in plasma wave. Usu-
ally in the absence of external magnetic field only the
electric component of the Lorentz force acts on charge
carriers. However, when the background drift is present,
the magnetic component is also essential; in particu-
lar, this component leads to the formation of electro-
magnetic (non-potential) plasma instabilities in gaseous
plasmas [17] or semiconductors [18]. Keeping this in
mind, we rewrite Eq. (3) as follows:

−iω̃mvω = −eEω − e

c
u0 ×Bω +m(u0,∇)vω , (4)

where Eω and Bω are the temporal Fourier components
of electric and magnetic fields of the plasma wave, re-
spectively.

At this moment we perform the following operations:
(1) apply the Faraday’s law of induction and express Bω

via Eω, (2) perform the 2d spatial Fourier transform in
the 2DES plane and (3) express the plasma wave current
j = n0v + u0n (v and n are the plasma wave velocity
and carrier density) via the electric field:
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j = σ̂EDE, (5)

where all the plasma wave-associated quatities are as-
sumed to be their (k, ω)-Fourier compoments, k is the
in-plane wave vector, and the electrodynamic conduc-
tivity tensor σ̂ED is given by:

σ̂ED =
σ0

ω̃ − kxu0

⎛
⎜⎝
ω2 + (kyu0)

2

(ω − kxu0)
kyu0

kyu0 ω − kxu0

⎞
⎟⎠ , (6)

where σ0 = ie2n0/mω is the free 2DES dynamic con-
ductivity. It is instructive to compare σ̂ED with the qua-
sistatic conductivity tensor σ̂QS (when the interaction
between the ac magnetic field and dc drift is neglected):

σ̂QS =
σ0

ω̃ − kxu0

⎛
⎝

ω2

(ω − kxu0)

ωkyu0

(ω − kxu0)

0 ω

⎞
⎠ . (7)

The above tensor is non-symmetrical, which implies
chirality of such a system (see Supplementary materi-
als). Surely, steady current cannot introduce chirality, so
the quasistatic approximation (7) should be used care-
fully. Still, this approximation works well as long as

jED
ω − jQS

ω ∝ u0

c
Bω → 0. (8)

Thus, all the previous results obtained for TM plasmons
(k||Eω , Bω = 0) in 2DESs with drift (e.g., [19–24])
remain valid, as well as some rigorous electrodynamic
models constructed for special cases, e.g. Ey = 0 in [25].

1.2. The search for eigen modes. Now our goal is
to search for eigen modes in the scheme of Fig. 1 with
2DES conductivity σ̂ED. For this reason we assume that
the 2DES is located at z = 0, define area z > 0 be area

I and area z < 0 be area II, and then search for eigen-
modes in the form of linear combination of TE and TM
waves:

EI =

⎡
⎢⎣TEI

⎛
⎜⎝
− sinα

cosα

0

⎞
⎟⎠+TMI

⎛
⎜⎝
−ikz cosα/k

−ikz sinα/k

1

⎞
⎟⎠

⎤
⎥⎦ EI(r, t);

(9)

EII =

⎡
⎢⎣TEI

⎛
⎜⎝
− sinα

cosα

0

⎞
⎟⎠+TMII

⎛
⎜⎝
ikz cosα/k

ikz sinα/k

1

⎞
⎟⎠

⎤
⎥⎦ EII(r, t),

(10)

where TEI,II and TMI,II are the amplitudes of TE and
TM electric field in the corresponding areas,

EI,II(r, t) = exp (ik cosαx+ ik sinαy ∓ kzz − iωt) ,

(11)
α is the angle between the wave vector and the drift
direction, kz =

√
k2 − k20 , and k0 =

√
εω/c.

Then we evaluate the corresponding magnetic fields
via the Faraday’s law and apply the boundary condi-
tions on the tangential components of the electric and
magnetic fields. As a result, we arrive at a linear system
which acquires diagonal form if we change variables to
TE± = 1/2(TEI±TEII) and TM± = 1/2(TMI±TMII):

(
M̂1 0

0 M̂2

)(
{TE−,TM+}T
{TE+,TM−}T

)
= 0, (12)

where the upper index T denotes transposition opera-
tion,

M̂1 =

(
− sinα −iκz cosα/κ

cosα −iκz sinα/κ

)
, (13)

κz = kz/k0, κ = k/k0,

M̂2 =

(
−i sinαΣxx + i cosαΣxy + κz sinα cosαΣxxκz/κ+ sinαΣxyκz/κ− i cosα/κ

−i sinαΣyx + i cosαΣyy − κz cosα cosαΣyxκz/κ+ sinαΣyyκz/κ− i sinα/κ

)
, (14)

and Σij = 2πσij/c.

It can be easily checked that det M̂1 = 0 only
when kz = 0, which makes the waves divergent at
z = ±∞. So, we conclude that TE− = TM+ = 0, or
TEI = TEII = TE, TMI = −TMII = TM, and arrive at

M̂2

(
TE

TM

)
= 0. (15)

Thus, the dispersion equation reads

det M̂2 = 0. (16)

First, let us take the simple limit α = 0 (the wave
vector is parallel to drift). Then Σxy = Σyx = 0 and
Eq. (16) simplifies to

(
0 Σxxκz − i

iΣyy − κz 0

)(
TE

TM

)
= 0. (17)

The system above has non-trivial solutions when

Σxxκz − i = 0, TE = 0 (TM wave) (18)
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or
iΣyy − κz = 0, TM = 0 (TE wave). (19)

The first of the equations above corresponds to ordinary
TM Doppler-shifted mode with dispersion

(ω − ku0)(ω̃ − ku0) = ω2
2d/ε, (20)

where ω2
2d = 2πe2n0|kz |/m is the fundamental 2d

plasma frequency, which we make independent of ε by
definition.

In turn, Eq. (19) corresponds to two-dimensional TE
galvanomagnetic wave with dispersion

ωTE = ku0 − i

τp

1

1 +A2
, (21)

where A = ω2d/|kz|c is the retardation factor
[26–28]. We notice, that Imσxx(ωTE) > 0 whereas
Imσyy(ωTE) < 0, which does not contradict the
Fal’ko’s and Khmel’nitskii’s condition (2) derived for
isotropic 2DESs.

We observe that Eqs. (1) and (21) have very much
in common. Actually, the 3D dispersion (1) was derived
for static conductivity, and the account for its dynamic
part would lead to the analogue of Eq. (21) with the only
change ω2d → ω3d =

√
4πe2n3d/m, n3d – 3D plasma

carrier density.
As a matter of fact, even for α �= 0 the same dis-

persion (21) holds in the most relevant limit u0/c �
� 1, kc � ω, ω2d (please refer to the Supplemenatry
material, Section II). To illustrate this statement, we
provide a numerical solution to Eq. (16) for a 2DES in
GaAs/AlGaAs heterostructure on Fig. 2 with typical pa-
rameters enlisted in the figure caption. In this case the
eigenmode profile would be TE, TM-mixed.

Fig. 2. (Color online) Numerical solution (solid lines)
to Eq. (16) and theoretical curves Eq. (21) for an
GaAs/AlGaAs heterostructure with parameters m∗ =

= 0.067me, me is the free electron mass, ε = 1 for sim-
plicity, n0 = 1012 cm−2, u0 = 105cm/s, α = π/3, τp = 1ps

The main difference between 2D and 3D GMWs is
quantitative, which is illustrated in Fig. 3. From this

Figure, blue axis, we observe that GMWs become low-
loss in the long wave length limit, and in this limit the
3D GMW loss is approximately n3d/n2d = 106 times
lower than the 2D GMW loss.

Fig. 3. (Color online) Comparison of 2D and 3D GMWs’
Q-factors and damping rates. Green lines correspond to
green axis, blue lines – to the blue axis. The purple line
denotes Q = 1 as an eye-guide for the green axis. Param-
eters of calculation are the same as in Fig. 2 except for
the drift velocity, which is taken to be 107 cm/s (approxi-
mately the GaAs saturation velocity) and α = 0

At the same time, even in the long wave length limit
(see Fig. 3) the 2D GMW’s Q-factor is extremely small
due to coinciding dependencies of real and imaginary
parts of frequency on the wave vector: Reω ∝ k and
Imω ∝ A−2 ∝ k, the latter relation being the conse-
quence of 2D fundamental frequency square-root dis-
persion. This small value could be increased by larger
dc drift (rising Reω) or higher carrier densities (decreas-
ing Imω), though even at extremal values the Q-factor
is around 10−3. A more intricate way to lower the 2D
GMW’s loss could be the introduction of magnetic en-
vironment [29–31] which is unachievable for 3D GMWs.
Our estimates show that the magnetic environment low-
ers the retardation factor by square root of magnetic
permittivity, which could add an order of magnitude to
the Q factor at most. Further exploration of the influ-
ence of magnetic surrounding on the 2D GMWs would
be given elsewhere.

1.3. Interaction of a drift-biased 2DES with EM
waves. The found TE GMW posesses the common fea-
ture of TE waves: it decreases the reflection of an inci-
dent wave [2, 11]. As an example we consider an evanes-
cent wave Eev = E0eye

−iωt+ikxx+kzz incident on a sys-
tem of Fig. 1. The evanescent wave can be obtained,
e.g., in Otto configuration (like it was done in [11]). As
a result, reflected and transmitted waves appear:

Er,t = {r, t}E0eye
−iωt+ikxx∓kzz. (22)
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The boundary conditions on the 2DES read:

1 + r = t; (23)

−1 + r + t =
2iω

kzc

2πσyy

c
t, (24)

from which we obtain the reflection coefficient:

r =
A2

A2 +
ω̃ − ku0

ω − ku0

. (25)

We observe that at ω = ku0 the reflection coeffi-
cient vanishes (and the transmission coefficient is equal
to unity). This means that when the “resonance condi-
tion” ω = ku0 is fulfilled, the incident wave does not
feel the 2d system and freely passes through it, which is
in contrast to ordinary plasmons. In real experiments,
however, the reflection coeffient would not be exactly
zero at the “TE resonance” as there is always a contrast
of dielectric permittivities ε1 �= ε2.

We also solved a problem when the in-plane wave
vector of an incident TE wave is not parallel to the
drift: k = exk cosα + eyk sinα. In this case, the in-
cident wave experiences birefringence and in addition
to TE-polarized wave there appears a TM-polarized
wave (10) in reflection and transmission signals. The
corresponding transmission and reflection coefficients
(rTE,TM and tTE,TM , respectively) are routinely found
from Maxwell’s equations.

In Figure 4 we plot the normalized reflection coef-
ficient |rED

TE | of a TE wave (i.e., Eev ∝ ex(− sinα) +

ey cosα) incident on a 2DES. |rED
TE | is normalized by

|rQS
TE |, where the upper index stands for the conduc-

tivity model taken for calculation. From Figure 4 we
observe the “TE resonance” line ω = ku0, which corre-
sponds to the condition rED

TE = 0, just as in the case of
normal incidence α = 0, Eq. (25). Obviously, the qua-
sistatic model cannot reproduce this result. The rapid
increase of |rED

TE |/|rQS
TE | in the lower part of the graph is

associated with unphysical dependence rQS
TE ∝ ω for low

frequencies. Note that the reflection coefficients differ
drastically in magnitude.

Interestingly, even in the quasistatic limit, the moth-
erland of σ̂QS , the quasistatic conductivity tensor may
lead to erroneous results. Thus, we found a striking dif-
ference between rQS

TM and rED
TM in the limit kc � ω :

rQS
TM ≡ 0; (26)

rED
TM ∝ i|k× u0|/ω = iku0 sinα/ω. (27)

From these equations we conclude that the electrody-
namic approach predicts the birefringence of an inci-
dent TE wave, whereas the quasistatic approach over-
looks this effect. In addition, we observe that rED

TM rises

Fig. 4. (Color online) Normalized reflection coefficient
∣
∣rED

TE

∣
∣ of a TE wave incident on a 2DES obtained with

electrodynamic (6) conductivity. The dashed black line
corresponds to the real part of TE mode dispersion (21).
Parameters of calculation are the same as in Fig. 2. The
values are normalized by

∣
∣
∣r

QS
TE

∣
∣
∣, the TE reflection coeffi-

cient in the same setup calculated with quasistatic con-
ductivity;

∣
∣
∣r

QS
TE

∣
∣
∣ is a smooth function in the presented ω, k

region

as 1/ω which can be explained in terms of Cerenkov
amplification of an incident wave in the low-frequency
limit ω < ku0. A detailed discussion of this effect lies
beyond the scope of this Letter and would be presented
elsewhere.

2. Final remarks and Conclusion. Our descrip-
tion relies on hydrodynamic Eq. (3). This approxima-
tion has a long history [32] and is formally applicable
when the electron-electron collision rate νee is the dom-
inant rate in the system: νee � ω/2π, 1/τp. Notably, νee
can reach the values the order of THz [33], which jus-
tifies the apllication of hydrodynamic model in this fre-
quency range and for relatively pure samples (τp ≥ 1 ps).
Still, the applicability of the HD approach is even wider,
as it corresponds to retaining only the zeroth and first
momentum angular harmonics of the distribution func-
tion. This approximation becomes asymptotically exact
in the long-wavelength limit kvF /|ω + iνee| � 1, where
vF is the Fermi velocity.

Most of our estimates corresponded to drift velocity
u0 = 103 m/s in GaAs/AlGaAs heterostructures. For
typical mobilities order of μ = 10m2/V ·s [34] and char-
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acteristic sample size of L = 100μm this value corre-
sponds to u0L/μ = 10mV of bias voltage.

In conclusion, we studied the interaction of dc charge
carrier drift with ac magnetic field in 2DESs (the high-
frequency Hall effect) and obtained the previously un-
known electrodynamic conductivity tensor σ̂ED (6).
This tensor is symmetric, in contrast to asymmetric qua-
sistatic conductivity tensor, which implies non-physical
chirality. Apart from this fault, the quasistatic model
fails to predict birefringence of an incident TE wave on
a 2DES even in the quasistatic limit ω � kc as well
as Cerenkov amplification; all these effects can be de-
scribed only by σ̂ED.

In addition, we showed that the high-freuqency Hall
effect leads to the formation of a new electromagnetic
mode, the two-dimensional TE galvanomagnetic wave.
This wave exists in the vicinity of a 2DES with dc cur-
rent and has linear dispersion (21). Its damping rate
depends on the wave length and can become less than
the standard 1/2τp 2D fundamental plasmon damping
rate in the long wave length limit. Still, the quality fac-
tor also fades in this limit at the same rate, which poses
an open question for sufficient choice of the 2DES sur-
roundings (e.g., magnetic ones) that could lower the
losses. In contrast to 2D TM plasmons, the 2D TE
GMW manifests itself in lowering the reflection coef-
ficient of an incident EM wave.

Though the quasistatic conductivity can be used for
the description of TM plasma waves, we would like to
point the inality of this action as the mathematical ex-
pressions for σ̂QS and σ̂ED are of comparable complex-
ity.

We believe that the reported results significantly
supplement our understanding of electromagnetic prop-
erties of 2DESs with dc current.
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