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We consider the local thermodynamics of the de Sitter state in the f(R) gravity. The local temperature,
which is the same for all points of the de Sitter space, is T = H/π, where H is the Hubble parameter. It
is twice larger than the Gibbons–Hawking temperature of the cosmological horizon, TGH = H/2π. The local
temperature is not related to the cosmological horizon. It determines the rate of the activation processes,
which are possible in the de Sitter environment. The typical example is the process of the ionization of the
atom in the de Sitter environment, which rate is determined by temperature T = H/π. The local temperature
determines the local entropy of the de Sitter vacuum state, and this allows to calculate the total entropy
inside the cosmological horizon. The result reproduces the Gibbons–Hawking area law, which corresponds to
the Wald entropy, Shor = 4πKA. Here K is the effective gravitational coupling, K = df/dR. In the local
thermodynamic approach, K is the thermodynamic variable, which is conjugate to the Ricci scalar curvature
R. The holographic connection between the bulk entropy of the Hubble volume and the surface entropy of
the cosmological horizon supports the suggestion that the de Sitter quantum vacuum is characterized by the
local thermodynamics with the local temperature T = H/π. The local temperature T = H/π of the de Sitter
vacuum suggests that the de Sitter vacuum is locally unstable towards the creation of matter and its further
heating. The decay of the de Sitter vacuum due to such processes determines the quantum breaking time of
the space-times with positive cosmological constant.

DOI: 10.1134/S0021364024600526

I. Introduction. The f(R) gravity in terms of
the Ricci scalar R is one of the simplest geometrical
models, which describes the dark energy and de Sit-
ter expansion of the Universe [1–7]. It was used to con-
struct an inflationary model of the early Universe – the
Starobinsky inflation, which is controlled by the R2 con-
tribution to the effective action. This class of models,
f(R) ∝ R − R2/M2, was also reproduced in the so-
called q-theory [8], where q is the 4-form field introduced
by Hawking [9] for the phenomenological description of
the physics of the deep (ultraviolet) vacuum (here the
sign convention for R is opposite to that in [2]). The
Starobinsky model is in good agreement with the obser-
vations. However, despite the observational success, the
theory of Starobinsky inflation is still phenomenologi-
cal. Due to a rather small mass scale M compared with
the Planck scale it is difficult to embed the model into
a ultraviolet (UV) complete theory [10–12].

In this paper we do not discuss the problem of the
UV-completion. We consider the de Sitter stage of the
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expansion of the Universe, and use the f(R) gravity
for the general consideration of the local thermodynam-
ics of the de Sitter state. The term “local” means that
we consider the de Sitter vacuum as the thermal state,
which is characterized by the local temperature. This
consideration is based on observation, that matter im-
mersed in the de Sitter vacuum feels this vacuum as the
heat bath with the local temperature T = H/π, where
H is the Hubble parameter. This temperature is twice
larger than the Gibbons–Hawking one, and it has no re-
lation to the cosmological horizon. The existence of the
local temperature suggests the existence of the other lo-
cal thermodynamic quantities, which participate in the
local thermodynamics of the de Sitter state. In addition
to the local entropy density s and local vacuum energy
density ε, there are also the local thermodynamic vari-
ables related to the gravitational degrees of freedom.

The f(R) theory demonstrates that the effective
gravitational coupling K (it is the inverse Newton con-
stant, K = 1/16πG) and the scalar curvature R are
connected by equation K = df/dR. This suggests that
K and R are the thermodynamically conjugate variables
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[13, 14]. This pair of the gravitational variables is sim-
ilar to the pair of the electrodynamic variables, electric
field E and electric induction D, which participate in
the thermodynamics of dielectrics.

Example of the influence of the de Sitter vacuum
to the matter immersed into this vacuum is provided
by an atom in the de Sitter environment. As distinct
from the atom in the flat space, the atom in the de
Sitter vacuum has a certain probability of ionization.
The rate of ionization is similar to the rate of ioniza-
tion in the presence of the thermal bath with temper-
ature T = H/π [15–17]. The same temperature deter-
mines the other activation processes, which are ener-
getically forbidden in the Minkowski spacetime, but are
allowed in the de Sitter background, see also [18, 19].
That is why it is natural to consider the temperature
T = H/π as the local temperature of the de Sitter
vacuum. Although the local temperature is twice larger
than the Gibbons–Hawking temperature assigned to the
horizon, TGH = H/2π, there is the certain connection
between the local thermodynamics and the thermody-
namics of the event horizon. It appears that the total
entropy of the volume VH bounded by the cosmological
horizon coincides with the Gibbons–Hawking entropy,
Sbulk = sVH = A/4G = Shor. This demonstrates that
the local thermodynamics in the (3+1) de Sitter is con-
sistent with the global thermodynamics assigned to the
cosmological horizon, although the origin of such bulk-
surface correspondence is not very clear.

Here we extended the thermodynamic consideration
to the f(R) gravity. Using the local thermodynamics
with T = H/π, we obtained the general result for the to-
tal entropy inside the horizon, Sbulk = sVH = 4πKA =

= Shor, where K = df/dR is the effective gravitational
coupling. This is in agreement with the global thermo-
dynamics of de Sitter cosmological horizon, which pro-
vides the further support for the local thermodynamics
with the local temperature T = H/π in the de Sitter
vacuum in the (3 + 1)-dimensional spacetime.

II. Thermodynamics of the de Sitter state.
A. Local de Sitter temperature. We consider the de

Sitter thermodynamics using the Painlevé–Gullstrand
(PG) form [20, 21], where the metric in the de Sitter
expansion is

ds2 = −dt2 + (dr − v(r)dt)2 + r2dΩ2 . (1)

Here the shift velocity is v(r) = Hr. This metric is sta-
tionary, i.e. does not depend on time, and it does not
have the unphysical singularity at the cosmological hori-
zon. That is why it is appropriate for consideration of
the local thermodynamics both inside and outside the
horizon.

Now let us consider an atom at the origin, r = 0. The
atom is the external object in the de Sitter spacetime,
which is playing the role of the detector (or the role
of the static observer) in this spacetime. The electron
bounded to an atom may absorb the energy from the
gravitational field of the de Sitter background and es-
cape from the electric potential barrier. If the ionization
potential is much smaller than the electron mass but is
much larger than the Hubble parameter, H � ε0 � m,
one can use the nonrelativistic quantum mechanics to
estimate the tunneling rate through the barrier. The
corresponding radial trajectory pr(r) is obtained from
the classical equation p2r/2m + prv(r) = −ε0, where
pr(r)v(r) is the Doppler shift:

pr(r) = −mv(r) +
√
m2v2(r) − 2mε0. (2)

The integral of pr(r) over the classically forbidden re-
gion, 0 < r < r0 =

√
2ε0/mH2, gives the ionization

rate
w ∼ exp (−2 ImS) = exp

(
−πε0

H

)
. (3)

This is equivalent to the thermal radiation with temper-
ature T = H/π, see also [17].

The same local temperature describes the process
of the splitting of the composite particle with mass m

into two components with m1 +m2 > m, which is also
not allowed in the Minkowski vacuum [15, 22–24]. In the
limit m � H , the rate of such decay of the composite
particle is w ∼ exp

(
−π(m1+m2−m)

H

)
. The similar pro-

cesses take place in the so-called Cosmological Collider
[18, 19], where the new particle created by the Hawk-
ing radiation plays the role of the external object which
produces the heavy particles. Here there are two differ-
ent physical processes, which are described by different
temperatures. The Hawking radiation from the de Sitter
vacuum is determined by the Hawking temperature TGH

of the cosmological horizon, while the further process –
the splitting of the created particles – is determined by
the local temperature T = 2TGH.

Moreover, the local temperature T = H/π also de-
termines the process of the Hawking radiation from the
cosmological horizon and the Gibbons–Hawking tem-
perature TGH = H/2π. The reason is that in the Hawk-
ing process, two particles are coherently created: one
particle is created inside the horizon, while its partner
is simultaneously created outside the horizon. The rate
of the coherent radiation of two particles, each with en-
ergy E, is w ∝ exp(− 2E

T ). However, the observer can de-
tect only the particle created inside the horizon. For this
observer the creation rate w ∝ exp(− 2E

T ) is perceived
as w ∝ exp(− E

T/2 ) = exp(− E
TGH

) with the Gibbons–
Hawking temperature TGH = T/2 = H/2π.
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On the contrary, in the local process of the decay
of the atom, which is not related to the cosmological
horizon, only single particle (electron) is radiated from
the atom. This process is fully determined by the local
temperature, w ∝ exp(− ε0

T ).
B. From local temperature to local entropy. Since the

de Sitter state serves as the thermal bath for matter, it
is not excluded that the de Sitter quantum vacuum may
have its own temperature and entropy [25]. If so, then
the quasi-equilibrium states of the expanding Universe
is described by two different temperatures: the temper-
ature of the gravitational vacuum and the temperature
of the matter degrees of freedom [26]. In this section we
discuss the pure de Sitter vacuum without the excited
matter ignoring for the moment the thermally activated
creation of matter from the vacuum. The excitation and
thermalization of matter by the de Sitter thermal bath
will be discussed in Section IV.

If the vacuum thermodynamics is determined by the
local activation temperature T = H/π, then in the Ein-
stein gravity with cosmological constant the vacuum en-
ergy density is quadratic in temperature:

εvac =
3

8πG
H2 =

3π

8G
T 2. (4)

This leads to the free energy density of the de Sitter
vacuum, F = εvac − Tdεvac/dT , which is also quadratic
in T , and thus the entropy density svac in the de Sitter
vacuum is linear in T :

svac = −∂F

∂T
=

3π

4G
T = 12π2KT. (5)

The temperature T and the entropy density svac are
the local quantities which can be measured by the local
static observer.

C. Gibbs–Duhem relation. The T 2 dependence of
vacuum energy on temperature suggests the modifica-
tion of the thermodynamic Gibbs–Duhem relation for
quantum vacuum and to the reformulation of the vac-
uum pressure. The conventional vacuum pressure Pvac

obeys the equation of state w = −1 and enters the en-
ergy momentum tensor of the vacuum medium in the
form:

T μν = Λgμν = diag(εvac, Pvac, Pvac, Pvac), Pvac = −εvac.

(6)
In the de Sitter state the vacuum pressure is negative,
Pvac = −εvac < 0.

This pressure Pvac does not satisfy the standard
thermodynamic Gibbs–Duhem relation, Tsvac = εvac +

+ Pvac, because the right hand side of this equation
is zero. The reason for that is that in this equation
we did not take into account the gravitational degrees

of freedom of quantum vacuum. Earlier it was shown,
that gravity contributes with the pair of the thermo-
dynamically conjugate variables: the gravitational cou-
pling K = 1

16πG and the scalar Riemann curvature R,
see [8, 27, 28]. The contribution of the term KR to ther-
modynamics is similar to the work density [29–32].

The quantities K and R can be considered as the lo-
cal thermodynamic variables, which are similar to tem-
perature, pressure, chemical potential, number density,
spin density, etc., in condensed matter physics. Indeed,
since the de Sitter spacetime is maximally symmetric, its
local structure is characterized by the scalar curvature
alone, while all the other components of the Riemann
curvature tensor are expressed via R:

Rμναβ =
1

12
(gμαgνβ − gμβgνα)R. (7)

That is why the scalar Riemann curvature as the co-
variant quantity naturally serves as one of the ther-
modynamical characteristics of the macroscopic matter
[33, 34]. Another argument is related to the so-called
Larkin–Pikin effect [35]. This is the jump in the number
of degrees of freedom, when the fully homogeneous state
is considered. One has the extra parameters, which are
space independent, but participate in thermodynamics
[36–38]. The same concerns the constant electric and
magnetic fields in vacuo, which add three more degrees
of freedom. These constant fields are mutually indepen-
dent, in contrast to the spacetime-dependent fields con-
nected by the Maxwell equations [37]. The scalar cur-
vature R in the de Sitter vacuum, which is constant
in space-time, also serves as such thermodynamic pa-
rameter. Then the gravitational coupling K = df/dR
serves as the analog of the chemical potential, which is
constant in the full equilibrium.

The new thermodynamic variables, which come from
the gravity, and Eq. (5) for the entropy density allow us
to introduce the corresponding Gibbs–Duhem relation
for de Sitter vacuum, which has the conventional form:

Tsvac = εvac + Pvac −KR. (8)

This equation is obeyed, since εvac + Pvac = 0; R =

= −12H2; and Tsvac = 12π2KT 2 = 12KH2, which
supports the earlier proposal that K and R can be con-
sidered as the thermodynamically conjugate variables
[27, 28].

The Equation (8) can be also written using the ef-
fective vacuum pressure, which absorbs the gravitational
degrees of freedom:

P = Pvac −KR. (9)
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Then the conventional Gibbs–Duhem relation is satis-
fied:

Tsvac = εvac + P. (10)

The equation (10) is just another form of writing
the Gibbs–Duhem relation (8). But it allows to make
different interpretation of the de Sitter vacuum state.
The introduced effective de Sitter pressure P is positive,
P = εvac > 0, and satisfies equation of state w = 1,
which is similar to matter with the same equation of
state. As a result, due to the gravitational degrees of
freedom, the de Sitter state has many common prop-
erties with the non-relativistic Fermi liquid, where the
thermal energy is proportional to T 2, and also with
the relativistic stiff matter with w = 1 introduced by
Zel’dovich [39].

D. Hubble volume entropy vs entropy of the cosmo-
logical horizon. Using the entropy density in Eq. (5), one
may find the total entropy of the Hubble volume VH –
the volume surrounded by the cosmological horizon with
radius R = 1/H :

Sbulk = svacVH =
4πR3

3
svac =

π

GH2
= 4πKA = Shor,

(11)
where A is the horizon area. This Hubble-volume en-
tropy coincides with the Gibbons–Hawking entropy of
the cosmological horizon. However, here it is the ther-
modynamic entropy coming from the local entropy of
the de Sitter quantum vacuum, rather than the entropy
of the horizon degrees of freedom.

Anyway, the relation between the bulk and surface
entropies in the local vacuum thermodynamics suggests
some holographic origin. Such bulk-surface correspon-
dence is valid only in the (3 + 1)-dimension2). In the
general d+1 dimension of spacetime, the same approach
gives the factor (d−1)/2 in the relation between the en-
tropy of the Hubble volume and the Gibbons–Hawking
entropy of the cosmological horizon, Sbulk = d−1

2 Shor.
This may add to the peculiarities of the d = 3 space di-
mension [40], where in particular the mass dimension of
the gravitational coupling, [K] = d − 1, coincides with
the mass dimension of curvature, [R] = 2.

E. Hubble volume vs the volume of Universe, and
thermal fluctuations of de Sitter state. It is not excluded
that our Universe is finite. Its volume V might be com-
paratively small, not much larger than the currently ob-
served Hubble volume VH [41].

If the Universe is finite and if the de Sitter state
represents the excited thermal state of the quantum
vacuum, the thermal fluctuations of the deep quantum

2)I thank the referee for this comment.

vacuum may become important. According to Landau–
Lifshitz [42], the thermal fluctuations are determined by
the compressibility of the system and by its volume. In
case of the Universe with the volume V , the fluctuations
of the vacuum energy density are given by [43]:

〈
(Δεvac)

2
〉
=

〈
(ΔPvac)

2
〉
=

T

V χvac
. (12)

Here χvac is the vacuum compressibility – the compress-
ibility of the fully equilibrium Minkowski vacuum with
εvac = −Pvac = 0. As for the quantum fluctuations, their
contribution to the vacuum energy density is typically
on the order of M4

Pl, where MPl is the Planck mass.
But in the equilibrium vacuum this contribution is can-
celled by the trans-Planckian degrees of freedom due to
thermodynamic Gibbs–Duhem relation [37, 43]. On the
other hand, the vacuum compressibility is determined
by the Planck energy scale, χvac ∼ 1/M4

Pl.
In the excited vacuum – the de Sitter state with

the temperature T = H/π and the energy density
<εvac> ∼ M2

PlH
2 – the relative magnitude of thermal

fluctuations is determined by the ratio of the Hubble
volume to the volume of the Universe:

〈
(Δεvac)

2
〉

〈εvac〉2
∼ VH

V
. (13)

The volume of the present Universe exceeds the Hubble
volume, V > VH , and thus the thermal fluctuations of
the vacuum energy density are still relatively small.

III. Thermodynamics of de Sitter state in
f(R) gravity.

A. Gibbs–Duhem relation in f(R) gravity. Let us
show that equation Shor = 4πKA remains valid also
in the f(R) gravity, but with the gravitational coupling
determined as the thermodynamic conjugate to the cur-
vature. In the f(R) gravity the action is:

S = −
∫

d4x
√−gf(R) . (14)

The generalization of the modified Gibbs–Duhem rela-
tion for the de Sitter states (i.e. for the states with con-
stant four-dimensional curvature) in the f(R) gravity
is:

Tsvac = εvac + Pvac −KR = −KR, (15)
εvac = f(R)−KR, K = df

dR . (16)

Here K is the natural definition of the variable, which is
thermodynamically conjugate to the curvature R, while
εvac serves as the corresponding thermodynamic poten-
tial. In the equilibrium de Sitter state the curvature is
determined by equation:

2f(R) = R df

dR . (17)
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B. Entropy of cosmological horizon in terms of ef-
fective gravitational coupling. The value of the local en-
tropy of the de Sitter state svac follows from Eq. (15),
assuming that the local temperature of the equilibrium
dS states is T = H/π. Then the total entropy of the
Hubble volume VH is given by the same Eq. (11):

Sbulk = svacVH = 4πKA = Shor. (18)

But now K is the effective gravitational coupling in
Eq. (16). This generalization of the Gibbons–Hawking
entropy was discussed in [8, 44–46]. But here it was ob-
tained using the local thermodynamics of the de Sitter
vacuum. This demonstrates that the local thermody-
namics of the de Sitter vacuum is valid also for the f(R)

gravity. The effective gravitational coupling K serves as
one of the thermodynamic variable of the local thermo-
dynamics. This quantity plays the role of the chemical
potential, which is thermodynamically conjugate to the
curvature R, and it is constant in the thermodynamic
equilibrium state of de Sitter spacetime.

For illustration, we consider an example of the mod-
ification of the gravitational coupling K in the de Sit-
ter environment. In the conventional Einstein gravity,
where f(R) = K0R + Λ, the de Sitter state has the
equilibrium value of the curvature, R0 = −2Λ/K0 =

= −12H2. Let us add the quadratic term to the Einstein
action [44, 8]:

f(R) = K0R− pR2 + Λ. (19)

Then one obtains the following equations for the equi-
librium value of the curvature R0, the entropy of the
Hubble volume Shor and the equilibrium value of the
effective coupling K:

R0 = −2 Λ
K0

= −12H2, (20)
Shor = svacVH = 4πKA, (21)

K =
df

dR
∣∣
R=R0

= K0 + p
Λ

K0
. (22)

The equilibrium curvature in the de Sitter space R0

is obtained from Eq. (17). It is the same as in Ein-
stein gravity, because the quadratic terms in Eq. (17)
are cancelled. The local entropy svac, which follows from
Eq. (15), is determined by the modified gravitational
coupling K. As a result, the entropy of the Hubble vol-
ume in Eq. (21), which we identify with the entropy of
the horizon Shor, is also determined by the modified
coupling K. The latter is given by Eq. (22).

The local entropy svac changes sign for K < 0, while
the cosmological expansion is still described by the de
Sitter metric. However, the negative K requires the neg-
ative parameter p < 0, which marks the instability of
such de Sitter vacuum [44].

IV. Local temperature and de Sitter decay.
The extension of the thermodynamics to the f(R) grav-
ity supports the idea that the de Sitter vacuum is the
thermal state with the local temperature T = H/π. On
the other hand the nonzero local temperature of the
vacuum suggests that the de Sitter vacuum is locally
unstable towards the creation of thermal matter from
the vacuum by thermal activation. This is distinct from
the mechanism of creation of the pairs of particles by
Hawking radiation from the cosmological horizon, which
may or may not lead to the decay of the vacuum energy.
There are still controversies concerning the stability of
the de Sitter vacuum caused by Hawking radiation, see,
e.g., [38, 47, 48] and references therein.

To describe the decay of the vacuum due to acti-
vation and thermalization of matter, the extension of
the Starobinsky analysis of the vacuum decay [49–52] is
needed. The thermal exchange between the vacuum and
the excited matter generates the thermal relativistic gas.
The temperature of relativistic gas tends to approach
the temperature T = H/π of the de Sitter heat bath.
Then the matter energy density εM tends to approach
the value εM ∼ T 4, i.e. due to the heating in the de Sit-
ter thermal bath the matter energy density tends to ap-
proach the local thermal equilibrium, εM → bH4, where
the dimensionless parameter b depends on the number
of the massless relativistic fields. The energy exchange
between the vacuum heat bath and matter can be de-
scribed by the following dynamical modification of the
Friedmann equations [53], where the dissipative Hubble
friction equation ∂tεM = −4HεM is extended to

∂tεM = −4H(εM − bH4). (23)

This equation describes the tendency of matter to ap-
proach the local temperature of the vacuum, T = H/π.
The extra gain of the matter energy, 4bH5, must be
compensated by the corresponding loss of the vacuum
energy:

∂tεvac = −4bH5. (24)

Here we use for simplicity the conventional general rel-
ativity with εvac = Λ = − 1

2K0R. This phenomenologi-
cal description of the energy exchange between vacuum
and matter does not depend on the details of the micro-
scopic (UV) theory, and requires only the condition for
slow variation of the Hubble parameter, Ḣ � H2.

Since the vacuum energy density is εvac ∝ KH2, one
obtains from Eq. (24) the following time dependence of
the Hubble parameter and of energy densities:
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H ∼ MPl

(
tPl

t+ t0

)1/3

, (25)

εvac ∼ M4
Pl

(
tPl

t+ t0

)2/3

, (26)

εM = bH4 ∼ M4
Pl

(
tPl

t+ t0

)4/3

. (27)

Here MPl is the Planck mass, M2
Pl = K, and tPl =

= 1/MPl is Planck time. We assume that t0 � tPl, and
thus Ḣ � H2.

Thus the thermal character of the de Sitter state de-
termines the process of its decay. The obtained power
law decay of H in Eq. (25) agrees with that found in
[54–58]. In [55–57] the parameter t0 is related to the
initial value of the Hubble parameter at the beginning
of inflation at t = 0:

H(t = 0) ∼ MPl

(
tPl

t0

)1/3

� MPl. (28)

This H(t = 0) corresponds to the scaleron mass M in
Starobinsky inflation. The time t0 ∼ E2

Pl/H
3
t=0 is called

the quantum breaking time of space-times with positive
cosmological constant [59, 60].

V. Conclusion. The local thermodynamics of the
de Sitter state in the Einstein gravity gives rise to the
Gibbons–Hawking area law for the total entropy inside
the cosmological horizon. Here we extended the consid-
eration of the local thermodynamics to the f(R) gravity.
We obtained the same area law, but with the modified
gravitational coupling K = df/dR, which is in agree-
ment with the global thermodynamics. This supports
the suggestion that the de Sitter vacuum is the ther-
mal state with the local temperature T = H/π, and
that the local thermodynamics is based on the thermo-
dynamically conjugate gravitational variables K and R.
The variable K plays the role of the chemical potential,
which is constant in the thermal equilibrium.

The local temperature T = H/π has the definite
physical meaning. It is temperature, which is experi-
enced by the external object in the de Sitter environ-
ment. In particular, this temperature determines the
local activation processes, such as the process of ion-
ization of an atom in the de Sitter environment. The
nonzero local temperature of the de Sitter state sug-
gests the thermal instability of this state due to the
thermalization of matter. The process of thermalization
of matter with the corresponding decay of the vacuum
energy density determines the quantum breaking time
of the space-times with positive cosmological constant.

The connection between the bulk entropy of the
Hubble volume, and the surface entropy of the cosmo-

logical horizon suggests a kind of the bulk-surface corre-
spondence, which may have the holographic origin [61–
63]. It would be interesting to check this correspondence
using the more general extensions of the Einstein grav-
ity and also different types of the generalized entropy
[32, 64–66].
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