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The way of formation of controlled phase inhomogeneity in a hybrid structure consisting of a short Josephson
junction between two superconducting thin films, with one electrode partially coated with a ferromagnetic
insulator, has been theoretically studied. The joint action of spin splitting and the Rashba spin–orbit coupling
at the superconductor–ferromagnet interface leads to the generation of a spontaneous supercurrent, which
changes the transport properties of the junction. The critical current and the current–phase relation of this
hybrid structure have been calculated; it has been shown that this structure can be used to form an anomalous
ϕ0 Josephson junction with the phase shift ϕ0 smoothly varying over a wide range.
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Interest has recently increased in mesoscopic sys-
tems, which exhibit simultaneously superconductivity,
spin–orbit coupling, and magnetism. Such supercon-
ducting structures with broken time reversal and spa-
tial inversion symmetries [1] demonstrate two inter-
esting interrelated phenomena: the anomalous
Josephson effect (see [2] and references therein) and
the superconducting (SC) diode effect [3]. The former
effect concerns ϕ0 Josephson junctions with an arbi-
trary phase difference ϕ0 in the ground state, for which
the current–phase relation can be written as I(ϕ) =

 [4, 5]. Here, ϕ is the phase difference
between the superconducting electrodes and  is the
maximum (critical) supercurrent that may pass
through the junction [6, 7]. In a particular case of

, a π junction is formed [8–11], which formally
corresponds to the negative critical current  (see
[12] and references therein). The anomalous Joseph-
son effect can be implemented between superconduc-
tors with a unconventional type of pairing [13–15], in
structures consisting of alternating 0 and π mini-junc-
tions [4, 16–18], in junctions made of conventional
singlet superconductors with a magnetic-metal barrier
without inversion center [5, 19, 20], and in some other
systems including quantum dots [21], semiconductor
nanowires with the strong spin–orbit coupling [22],
and topological insulators [23, 24]. Such ϕ0 junction
included in a closed contour induces an anomalous
Josephson current and can be used as a phase battery
[22, 25] or to control SC circuits and memory devices
[26–28]. The superconducting diode effect implies

nonreciprocal (more generally, anisotropic) transport,
which is possible both in bulk materials [29–31] and in
various SC systems [32, 33], including those based on
Josephson junctions [34, 35].

The above-described ways of forming the ϕ0 junc-
tion imply different mechanisms of creation of the
phase difference due to specific features of tunneling
through the barrier and/or the symmetry of the super-
conducting wavefunction. An alternative approach is
to form a phase shift across the junction using an
external magnetic f lux penetrating the normal region
[18, 36, 37] or current injection into the junction
region on a scale smaller than the characteristic
Josephson length [38–40]. Abrikosov vortices trapped
in junction electrodes may be sources of high phase
inhomogeneity near the junction [41–44]. The posi-
tion of Abrikosov vortices in the junctions can be con-
trolled by creating an additional pinning potential by
means of microstructuring of SC electrodes [45] or by
forming an array of submicron ferromagnetic particles
near the superconductor surface [46–48] (their mag-
netization can be changed using a magnetic force
microscope probe [49]). A change in the vortex posi-
tion relative to the junction changes significantly the
field dependence  [45], transport properties, and
the current–phase relation of the Josephson junction
and may be accompanied by the formation of the
π state in this hybrid system [50].

In this work, we study the properties of the super-
conductor–ferromagnet hybrid structure serving as
a tunable ϕ0 junction, which consists of a planar
Josephson junction with one SC electrode partially
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Fig. 1. (Color online) Schematic of the model supercon-
ductor–ferromagnetic structure: the planar Josephson
junction in the plane x = 0 and the uniformly magnetized
ferromagnetic insulator disk with the radius R centered at
the point (xd, yd). The dashed line shows the “image” of
the ferromagnetic insulator disk, the addition of which
ensures both the absence of the normal x component of the
supercurrent in the junction plane and the boundary con-
dition given by Eq. (5).

d

d

coated with a ferromagnetic insulator (FI), the mag-
netic moment of which lies in the film plane (x, y)
(Fig. 1). The exchange interaction between ferromagnet-
ically ordered FI ions and conduction electrons of the
metal induces the effective exchange field h, which sig-
nificantly splits spin subbands [51–54] (see also [55,
56]). Because of the broken spatial inversion symme-
try, the Rashba spin–orbit coupling 
is present in the surface layer with the thickness

 near the superconductor–ferro-
magnet interface ( ) [57, 58]. Here, p is the
electron momentum, σ is the Pauli matrix vector, n is
the unit vector directed along the normal to the super-
conductor–ferromagnet surface, Eg is the typical band
gap in the FI, and αR = ℏ  is the spin–orbit coupling
constant, which is related to the Rashba velocity vR
[59]. The joint action of the exchange field, spin–orbit
coupling, and superconducting pairing leads to the
formation of a helicoidal state in the superconductor
[60]; this state is characterized by the phase modula-
tion of the superconducting order parameter ψ in the

 direction and is current-free in spatially homo-
geneous systems [57, 58, 60, 61]. When the supercon-
ductor is coated partially with a ferromagnet, the heli-
coidal state is formed only in a limited region, which
induces a supercurrent in the hybrid structure [62–
65]. The resulting phase inhomogeneity, which serves
as a phase battery [66, 67], and the related supercur-
rent make it possible to efficiently change the current–
phase relation of the hybrid structure as a whole.

The model object under consideration is the super-
conductor–ferromagnet structure consisting of a
Josephson junction between two s-type superconduc-
tor films S1 and S2 with the thickness d ( )

α × ⋅ σ�R( / )[ ]n p

�∼ �SO g/ 2l mE d
− ≤ ≤SO 0l z

vR

×[ ]n h

λ ξ� �F d
and the width W  Λ, which are separated by a thin
insulating layer (Fig. 1). An FI disk with the center at
the point rd = (xd, yd) and the radius  is
located on the surface of the planar junction electrode
S2. Here,  is the coherence length, λF is the Fermi
wavelength of the superconducting metal in the nor-
mal state, and  is the Pearl screening length
of the magnetic field in the film [68], which is related
to the London depth  for the bulk
superconductor. At , the exchange interaction
in the SC film under the disk ( ) can be con-
sidered as spatially homogeneous. On the assumption
that the FI induces the exchange field hFI in the sur-
face layer with the thickness a, one can estimate the
effective exchange-interaction energy 
[52–56]. Below, we consider only the case of suffi-
ciently low temperatures and disregard the suppres-
sion of the superconducting order parameter ψ =

 due to the inverse proximity effect at the super-
conductor–ferromagnet interface on the assumption
that  and  are identical throughout the SC film. It
is also assumed that the distance from the junction to
the disk is not too small ( ) and there are no
Pearl vortices [68], which can be formed near the
FI disk edges [65, 69–71]. On these assumptions, the
free-energy functional of the hybrid structure under
consideration should be supplemented with a momen-
tum-linear term (Lifshitz invariant), which can be
written for the London model in the form [64]

(1)

Here,  is the magnetic f lux quantum
(е > 0), where ℏ is the reduced Planck constant, c is
the speed of light in vacuum, and e is the elementary
charge; EF is the Fermi energy in a superconducting
metal; and r = (x, y) is the position vector in the struc-
ture plane. Note that the contribution from  to the
free energy of a superconductor with the broken spatial
inversion symmetry (along the direction n) and in the
presence of the exchange or Zeeman field h can be jus-
tified on only symmetry considerations [72, 73].

The occurrence of the inhomogeneous helicoidal
state in a limited region of the SC film under the
FI disk leads to the generation of spontaneous super-
current, the distribution of which in the London
approximation including the gradient term (1) and the
Josephson junction in the plane x = 0 is described by
the expression

(2)
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where  denotes the gradient in the (x, y) plane. The
parameter

(3)

where  is the unit vector along the exchange field

and λR = 2πℏ/(m ) is the wavelength corresponding

to the Rashba momentum, is nonzero in the region
covered with the FI disk and characterizes the joint

action of the exchange field  and the Rashba

spin–orbit coupling. The vortex source υ is deter-
mined by the gradient of the Josephson phase differ-

ence  across the junction [74]:

(4)

For the simplest sinusoidal dependence of the
Josephson current on the phase difference

, the current component g normal to the

junction should satisfy the following condition in the
junction plane:

In the planar junction with the critical current density jc
at , the parameter L =  acts

as the Josephson length  [75], and
the contribution from the vortex source υ (4) to the

supercurrent  (2) can be disregarded [76]. On the
assumption that the critical current of the junction is
low (in comparison with the currents induced in the
film by the FI disk), the low electron transparency of
the insulating barrier can be neglected, and it will be

assumed below that . This simplest approxima-
tion corresponds to the zero boundary condition for

the supercurrent component  in the junction
electrode S2,

(5)

and allows for an analytical solution, which makes it
possible to qualitatively describe the expected effect.
In the case under consideration (a narrow SC strip
interrupted by the Josephson junction), the screening
effect and the influence of the magnetic field gener-
ated by this current can be neglected. The current dis-

tribution  is determined mainly by the term 

( ), while the contribution

from the vector potential A in Eq. (2) can be disre-

garded. The y component of the supercurrent  (2)
should be absent at the edges of the SC strip (y =
0, W), which corresponds to the boundary conditions

(6)

The condition , expression (2), and

boundary conditions (5) and (6) make it possible to
calculate the distributions of the SC order parameter
and supercurrent generated in a narrow SC strip with

∇
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the planar Josephson junction under the exchange
field of the FI disk and the Rashba spin–orbit cou-
pling at the superconductor–ferromagnet interface.

The substitution of Eq. (2) into the condition

 = 0 gives the two-dimensional Poisson’s equa-

tion

(7)

which, along with the boundary conditions (5) and
(6), describes the distribution of the order parameter

phase  in the junction electrode S2 with the FI disk

(i.e., at  in this case (see Fig. 1)). In the afore-
mentioned approximations (where screening effects
are neglected (A = 0) and the Josephson current
through the absolutely non-transparent barrier is
absent (jc = 0)), there is no supercurrent in the left

electrode S1, and the homogeneous state is established

with the wavefunction whose phase can be assumed to
be zero for certainty. Boundary condition (5) can be
satisfied using the image method and by adding the
supercurrent formed by the FI disk with the center at

( ), radius R, and exchange field  =

. In view of the linearity of Eq. (7)

and boundary conditions (5) and (6), the desired solu-
tion of Eq. (7) at x ≥ 0 can be presented as

(8)

Here,  is the solution of Poisson’s equation (7) in
an infinite film with the FI disk with the sources on
the right-hand side that are nonzero in the regions

 and are characterized

by the exchange field  (see

the supplementary materials):

(9)

The function  in Eq. (8) is the solution of the two-
dimensional Laplace equation

(10)

in an infinite strip ,  with the follow-

ing boundary conditions at the edges y = 0 and y = W:

(11)

which can be written as [77]
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Fig. 2. (Color online) Phase distribution of the wavefunction φ((xs, y) specified by Eqs, (8), (9), and (12) in two cross sections

xs = (solid lines) 0 and (dashed lines) W of the electrode S2 for three orientations χ = 0, π/4, and π/2 of the exchange field of the

ferromagnetic insulator disk and xd = (a) 0.5W and (b) 0.3W. The calculations were performed with , ,

and yd = 0.5W.

α 2
0 / = 1R W = 0.25R W
where , , and  =

.

Expressions (8), (9), and (12) determine the order

parameter phase distribution  in the inhomoge-

neous state arising in a narrow SC strip with the planar

Josephson junction at  under the exchange field
of the FI disk and the Rashba spin–orbit coupling at
the superconductor–ferromagnet interface. The phase

 is determined up to an arbitrary value ϕ0, which

corresponds to the phase difference for the order
parameters in the electrodes S1 and S2 far from the

junction region and the FI disk, where the homoge-
neous SC state is established. Figure 2 shows the phase

distributions  for two cross sections of the elec-

trode S2 at different orientations of the exchange field

of the FI disk. It can be seen in Fig. 2 that the phase

distribution  in the cross section xs = W on the

right of the disk (dashed lines) becomes almost uni-

form even at . The nonuniform phase dis-

tribution  in the junction plane induced by the
FI disk (solid lines) depends significantly on the ori-
entation of the exchange field h and the position of the
FI disk. As expected, the modulation amplitude of the

phase  increases with a decrease in the distance

 between the disk and the junction.

Below, we consider the case where the FI disk is
centered symmetrically with respect to the edges of the
SC strip (i.e., yd = W/2). Since the width W of the SC

electrodes is an obvious spatial scale in the structure

[ ]
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under consideration, one can pass to dimensionless
variables and express all distances in terms of W. In

this case, , , and the expression for

 (12) can be simplified to the form

(13)

where

In the limiting case of low transparency of the insu-

lating barrier ( ), the found distribution of the

order parameter phase  in the electrode S2

determines the Josephson phase difference ϕ(y) +

ϕ0 =  at the planar junction, where

(14)

The modulation amplitude of the Josephson phase
difference (14) depends on the dimensionless parame-

ter , which describes the total influence of

spontaneous supercurrent (2) on the planar junction.
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Fig. 3. (Color online) (a) Phase shift ϕ0 and (b) critical current Ic versus the direction of the exchange field χ for three values

 = 0.85, 1, and 1.25 and two distances xd = (closed symbols) 0.5W and (open symbols) 0.3W from the center of the fer-

romagnetic insulator disk to the junction. The calculations were performed with  and yd = 0.5W. The dashed lines in

panel (a) plotted according to Eq. (16).

α 2
0 /R W

= 0.25R W
For the constant jc value and sinusoidal depen-

dence of the supercurrent density through the junction
on the phase difference, the ground state of the
Josephson junction in the hybrid structure under con-
sideration corresponds to the minimum energy

(15)

where  is the maximum supercurrent in the

planar junction, Eq. (14) for  determines the
modulation of the phase difference across the junc-
tion, and ϕ0 is the difference of the order parameters

phase between the electrode cross sections S1 and S2

far from the junction region and the FI disk, where the
homogeneous (in space coordinates) SC state is estab-
lished. The minimum energy (15) determines the

phase shift  in the current–

phase relation , where Ic =

 is the critical current of the ϕ0 junction

and

Figure 3 shows the dependences of the phase shift ϕ0

and the critical current Ic on the orientation of the

exchange field of the FI disk for several  val-

ues, which demonstrate that this superconductor–fer-
romagnet hybrid structure can be used to create an
anomalous Josephson junction with the phase shift ϕ0

smoothly varying over the wide range of 0–π. The
hybrid ϕ0 junction consists of the planar Josephson

junction and an external phase battery, which ensures
smooth tuning of both the phase shift ϕ0 and the criti-

cal current Ic of the structure as a whole. If the dis-

[ ]
 

ϕ − ϕ + ϕ 
  


�

1

0
J 0 0

0

( ) = 1 cos ( ) ,
2

IE dy y
e

0 c=I j dW
ϕ( )y

( )ϕ ϕϕ −0 = arctan /S C
ϕ ϕ + ϕc 0( ) = sin( )I I

ϕ ϕ+2 2

0I S C

( ) ( )ϕ ϕϕ ϕ 
1 1

0 0

= sin ( ) , = cos ( ) .S dy y C dy y

α 2

0 /R W
JETP LETTERS  Vol. 119  No. 7  2024
tance between the disk and the junction is not too

small (xd > 2R) and , the modulation of the

Josephson phase difference is weak ( )
and the critical current Ic decreases slightly in compar-

ison with the maximum value I0; hence, the phase

shift ϕ0 can be estimated as (see the supplementary

materials)

(16)

This simple estimate for ϕ0 is in good agreement with

the calculated results (dashed lines in Fig. 3a). Note
that the phase difference ϕ and the phase shift ϕ0 are

determined between the electrode cross sections,
which are quite distant from the junction region and
the FI disk, where the homogeneous SC state is
restored; i.e., the hybrid Josephson structure includes
the tunnel junction and the portion of the electrode S2

where the spatial distribution of the transport current
deviates from the uniform one. The spontaneous
supercurrent generated by the FI disk and the spin–
orbit coupling changes the kinetic inductivity of the
electrode, forming an additional phase difference ϕ0.

A similar modification of the current–phase relation
I(ϕ) in superconductor–normal-metal–supercon-
ductor Josephson structures, which includes the
inductance due to supercurrent redistribution in elec-
trodes, was considered in [78, 79].

To summarize, the properties of the hybrid ϕ0 junc-

tion consisting of a planar Josephson junction and an
external phase battery formed by a ferromagnetic insu-
lator disk on the surface of one of the superconducting
junction electrodes in the presence of the Rashba
spin–orbit coupling at the superconductor–ferromag-
net interface have been studied. The main distinguish-
ing feature of this device is the possibility of varying

α 2

0 / 1R W �

ϕ + ϕ π�0| ( ) |y
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1 2
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0
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the phase shift in the current–phase relation I(ϕ) =

 smoothly and over a wide range (from 0

to π) by changing the direction of the magnetization
vector in the ferromagnetic insulator layer while the
critical current Ic is retained almost constant.
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