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The Fano factor,  of the shot noise of the current through the edge states of a two-dimensional topological
insulator with contacts of generic type is calculated. A magnetic static defect changes  significantly. For
metallic contacts, as the strength of the defect increases, the Fano factor increases from  to its maxi-
mum value,  and then decreases back to zero value in the limit of strong defect. For tunnel con-
tacts in the limit of weak tunnel coupling, the Fano factor is insensitive to the strength of the defect: 
For weak but finite tunnel coupling strength,  exhibits a periodic series of sharp peaks of small amplitude
as a function of the magnetic f lux piercing the sample. The peaks transform into Aharonov–Bohm harmonic
oscillations with increasing the strength of the tunnel coupling.
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1. INTRODUCTION
The study of electrical and optical properties of the

topological insulators (TI), i.e., materials that are
insulators in the bulk, but have conducting states at the
boundary [1–3], is one of the hot topics actively dis-
cussed in the last decade. In particular, in two-dimen-
sional (2D) TI, non-trivial topology of bulk bands
leads to the appearance of helical one-dimensional
(1D) states which conduct the current along the edges
of the sample without dissipation. The propagation of
electrons in such 1D channels is characterized by a
certain helicity, i.e., electrons with opposite spins trav-
eling in opposite directions. A remarkable conse-
quence of this feature is the prohibition of backscatter-
ing by non-magnetic impurities, and precisely due to
this property there is no dissipation in such channels.

The best known implementation of 2D TI are the
quantum wells in HgTe/CdTe-based structures, the
topological properties of which were predicted theo-
retically [4, 5] and confirmed by a series of experi-
ments, including measurements of the conductance of
edge states [6] and experimental evidence of nonlocal
transport [7–10].

If one attaches two non-magnetic contacts to an
edge of a 2D TI and shift (for example, by using a gate)
the Fermi level into the band gap, then the conduc-
tance of such a device will be completely determined
by the properties of the edge states (see Fig. 1). Since
the sample boundary can be bypassed in two direc-

tions, such a system is an interferometer. Accordingly,
both the average current and its noise depend on inter-
ference effects and, as a consequence, the observed
quantities in such systems can be controlled due to the
Aharonov–Bohm (AB) effect [11–17]: they periodi-
cally depend on the magnetic f lux penetrating the
region encompassed by electronic states.

Typically, interference is suppressed when T
becomes larger than the distance, , between levels of
the system. As was recently shown theoretically [14–
17], for AB interferometers based on helical edge states
(HES), this is not the case, and the interference effects
“survive” even in the case  where

  are the lengths of the interferometer
arms, and  is the Fermi velocity. For typical  of
order of 107 cm/s and typical system sizes (>1 micron),
the value of  does not exceed a few Kelvin. This
means that the interference effects in systems based on
HES can be studied at relatively high temperatures,
which are relevant for various applications.

We recently discussed the conductance of the AB
helical interferometers [14–17] and the properties of
the tunnel chain of the AB helical rings [18, 19]. Here
we will discuss another observable quantity—the cur-
rent shot noise.

The shot noise in HES has already been discussed
many times [20–32]. However, the role of the interfer-
ence effects in the noise has previously been discussed
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Fig. 1. (Color online) AB helical interferometer. The green
dot indicates a MD. Contact areas are highlighted in grey.
only in geometry other than shown in Fig. 1 and in a
different regime, , where V is the bias
voltage [22, 23]. Usually, an infinite boundary of a TI
is considered, in which there is some kind of defect
leading to backscattering, for example, a dynamic
magnetic impurity. Actually, spin-unpolarized elec-
trons entering the HES through a non-magnetic con-
tact (tunnel or metal) have equal probabilities to jump
into the right-moving state with a certain spin and to
the left-moving one with the opposite spin (see below
the expression (7) for the scattering matrix of a non-
magnetic contact). Therefore, for a finite size sample
in standard two-terminal geometry (see Fig. 1), the
electron can reach the second contact and exit the
sample moving clockwise or counterclockwise. More-
over, for any contacts, with the exception of purely
metallic ones (for example, for tunnel contacts or
quantum point contacts), there is a finite probability
of passing by the contact without leaving the sample,
i.e., both “right-handed” and “left-handed” electrons
can wind around the sample several times before com-
ing out to the contact, and the corresponding pro-
cesses can interfere. Note that quantum point contacts
to the HES have already been realized experimentally
[33], so that possible manifestations of interference
effects in conductance and noise allow experimental
verification, especially having in mind that condition

 does not require very strict restrictions on
temperature.

At the same time, in contrast to the standard AB
interferometer based on conventional (non-helical)
states, in a helical interferometer the right and left
electronic states have opposite spins at each point and,
as a consequence, there is no interference at ballistic
case. Interference contributions to the conductance
and the noise appear in the presence of backscattering
in one of the interferometer arms. Such scattering can
be caused, for example, by a MD or a charged island
tunnel-coupled to the HES. It is worth noting that
interference effects in a helical interferometer are not
reduced to AB oscillations (examples of interference
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processes independent of the magnetic field are given
in [16], see Section 4).

The problem of the dynamic magnetic impurity in
the HES has been studied in great detail (see, for
example, works [25, 28–32]). The main idea was to
take into account the back action of electrons in the
infinite HES on a magnetic impurity, whose magnetic
moment changes direction after each scattering event.
Then, for an isotropic exchange interaction between
the impurity and the HES, the magnetic moment of
the impurity relaxes after some time (the so-called
Korringa time) towards the direction of the electron
spin in the HES at the point where the impurity is
located and, as a consequence, the interaction
between the impurity and the HES completely
“switches off” (see discussion in [25]). Accordingly,
the problem of the noise intensity at zero frequency in
the HES with a single impurity makes sense only in the
presence of an anisotropic exchange interaction [28]
(or an external magnetic field acting on a dynamic
impurity, see discussion in [32]). This can be seen, for
example, from the final formulas for the Fano factor
(FF), obtained in the work [28]. These formulas are
singular in the limit of isotropic exchange (p = 1, q = 1
in the notation [28]), i.e., the result for the FF depends
on the order in which the constants responsible for the
anisotropy tend to zero (see also discussion in [27]).

In this sense, measuring the FF in an experiment
according to the problem setup in [28] will provide
more information about the properties of the impurity
(for example, about the anisotropic exchange con-
stants) than properly about the HES. At the same
time, in a real situation, the relaxation of the magnetic
moment of the impurity is caused not only by the
interaction with the HES, but also with the environ-
ment of the impurity, which will immediately give a
non-singular response for the FF in case of the isotro-
pic exchange interaction. Therefore, it seems no less
interesting to study the case that is completely oppo-
site to the case considered in the papers [25, 28–32],
namely, the case of a static MD with a large spin,
which is robustly connected to the external environ-
ment. In this formulation, the influence of the HES
on the magnetic moment of the defect can be
neglected. This is precisely the case which we will con-
sider in this work.

Specifically, we assume that there is a potential
dielectric ferromagnetic contact (magnetic needle)
with high magnetic stiffness. The direction of the mag-
netic moment of the defect is determined by the
exchange anisotropy inside the dielectric and by
the demagnetization tensor. Such a defect ensures the
existence of a magnetic field in a small region of
the HES, i.e., allows elastic backward scattering with-
out tunneling coupling between the HES and defect.
Note that the possibility of creating static magnetic
contacts to the HES has already been discussed in
another context [34]. In principle, the interference
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Fig. 2. (Color online) The scattering amplitudes of con-
tacts, which for simplicity are modeled as a single-channel
wire with the spin. It is assumed that there is no spin f lip at
the contact so that two spin polarizations at the contact are
completely separated. The  case corresponds to a
tunnel contact, and the  case models a metal contact.

→ 1t
→ 0t
effects we are interested in could be observed in pres-
ence of a point-like non-magnetic scatterer, taking
into account the electron–electron interaction [35].
In the latter case, however, an analysis of inelastic
effects is required, which is beyond the scope of this
work.

For one spinless quantum channel, the shot noise
intensity is proportional to the product of the trans-
mission  and the reflection  coefficients
of the scatterer:

A convenient measure of shot noise is the FF, 
 where I is the current in the channel.

Experimental measurement of the FF at zero mag-
netic field for the edge states of 2D TI gives the value

 [24, 26]. The upper value 0.3, is close to
the 1/3 value for diffusive conductor. A similar answer
is obtained in the model of a large number of
“islands,” tunnel-connected to the HES, in which the
spin can relax [36]. The effect of such islands on HES
is currently being actively debated (see [37] and refer-
ences therein).

In this work, we study the shot noise FF for the
current f lowing through the edge states of the 2D TI to
which two identical contacts are connected, which can
be of metal or tunnel character. A fixed bias voltage V
is applied to the contacts. We will consider the most
interesting and easily realized case:

(1)
For simplicity, we model the external system with a
conventional (non-helical) single-channel wire with
spin and describe the junction of the interferometer
with the external system by real amplitudes t, r
( ), where  is the amplitude of the tunnel-
ing from the external contact to the edge state of the
sample, and t is the amplitude of the passage along the
HES passing the contact (without exiting the sample)
(see Fig. 2). Although this model of the contact is very
simplified, it is commonly used in the quantum inter-
ferometry, starting from the work [38], since it allows
one to describe the transition from the metal contact
(t = 0) to the tunnel contact (t = 1). In particular, this
model qualitatively describes quantum point contacts
to the HES, which have already been used in the
recent experiment [33].

We assume that there is a static MD at the edge of
the system. The goal of the work is to calculate

 where  describes the scattering strength on
the MD (  is the absence of the defect,  is
a strong, ideally reflective defect), and 
where  is the magnetic f lux through the sample, and

 is the f lux quantum. As we will show, for metal
contacts FF does not depend on  and the MD
strongly enhances the FF. There is an optimal value of
the defect strength  which gives the max-
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imum value of the FF,  On the contrary,
for tunnel contacts, FF is insensitive to both the f lux
and the strength of the defect and is equal to

= 1/2. Moreover, for contacts with the
amplitude t close, but not exactly equal 1, MD reduces
FF. We will also demonstrate that for a contact with an
intermediate tunneling amplitude,  the
external magnetic field affects the FF, although the
total relative change in  for  changing from zero to
one is quite small ( ).

2. FORMULATION OF THE PROBLEM
The current noise is related with f luctuations of the

electric current with respect to its average value
. Here  is the current operator (an

analytical expression for  is given in [39, 40]). The
current correlation function associated with the noise
is defined by:

The Fourier transform of  gives an expression for the

noise power:  (the factor 2
in this expression is a matter of convention, see for-
mula (1) in [39] and the comment after Eq. (49) in
[40]).

Spin-dependent transport through the two-termi-
nal device is fully characterized by the matrix of trans-
mission amplitudes  (here  and  are the spin
indices associated with the outgoing and the incoming
electrons, respectively) [39, 40]:
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is related to the spin-averaged transmission coeffi-
cient, , by the equation  Aver-
aging this expression over the energy, we obtain an
expression for the conductance 
and find the current,

(4)

and the FF,

(5)

The transmission amplitudes  vary on an
energy scale of the distance between levels 
We will focus on the most interesting case, when the
conditions (1) are satisfied. Then for the FF we have

(6)

where the averaging is taken over a small temperature
window in the vicinity of the Fermi level. In the next
section we will formulate a model that will allow us to
find  using the formula (6).

3. MODEL
We consider 2D TI, assuming that the Fermi level

is located in the bulk gap, so that the transport between
two contacts connected to the system is completely
determined by the HES.

The simplest contact scattering matrix has the form

(7)

where two identical blocks are responsible for two
spins, and the basis is chosen in accordance with the
spin polarization of the helical states at the point of
contact (red and blue in Fig. 2).

We will assume that at the edge of the TI there is a
MD: for example, a potential dielectric ferromagnetic
point contact with high magnetic rigidity and with the
fixed magnetic moment, the direction of which is
determined by uniaxial anisotropy and the demagneti-
zation tensor of the ferromagnet. We describe scatter-
ing on such MD by the scattering matrix

(8)

ε7( ) ε ε7 7̂( ) = Tr[ ( )]/2.

ε ε 7
2= 2( / ) ( ) ,G e h

( )
μ+

μ

ε ε 7

2
ˆ= Tr[ ],

eV
eeI d
h

μ+

μ
μ+

μ

ε −

ε





7 7

^

7

ˆ ˆTr[ (1 )]

= .
ˆTr[ ]

eV

eV

d

d

αβ ε( )t
Δ πv= 2 / .L

ε

ε

 − 

 

7 7
^

7

ˆ ˆTr (1 )= ,ˆTr

^,

− 
 
  +

− 
 
 

2 2

0 0
0 0ˆ = , = 1,

0 0
0 0

l

t r
r t

S t r
t r

r t

ϕ

− ϕ

 θ θ
  θ θ 

cos sin  ˆ = ,
sin  cos

i

M i

i e
S

i e
JETP LETTERS  Vol. 119  No. 5  2024
that allows for backward scattering, and neglect the
back influence of the HES on the parameters of 
The backward scattering rate,  is deter-
mined by the quantity  while the phase  has the
meaning of the backward scattering phase on the MD.

The matrix of the transmission amplitudes  from
one contact to another is determined as follows

(9)

where  and  are the amplitudes of
incoming (from the left contact) and outgoing (to the
right contact) waves, respectively (see Fig. 1). This
matrix has been obtained earlier [15]:

(10)

Here,  is determined by the relation

(11)

and the matrix  has the form

(12)

where ,  is the electron momen-
tum, and x0 is the position of the MD, measured from
the left contact. The coefficients

(13)

(14)

are related by the relation  and depend only
on the strength of the defect and the magnetic f lux.
The energy dependence is present only in the off-diag-
onal terms of  in exponents .

4. COMPUTATION OF THE FF
We calculate the expression for the FF in the gen-

eral case by substituting the matrix of transmission
amplitudes (10) into the formula (6) and averaging
over the energy in the limit . Technically, at
such temperatures, energy averaging is reduced to cal-

culating the integral  [14, 15].

The analytical expression obtained after averaging is
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Fig. 3. (Color online) (a) The FF as a function of contact
transparency, t, for different strength of the scattering on
the MD, . The widened green curve shows the family of
dependencies of  on t for  and different  The
width of this curve shows the change of  with changing
magnetic f lux in the whole relevant interval:  (b)
Dependence of  on t and  for .

θ
^ θ θmax= φ.

^

φ0 < < 1.
^ θ φ = 1/4
rather cumbersome (a detailed derivation will be pre-
sented elsewhere) and we show it in the supplementary
material. We will consider limiting cases to clarify the
physical aspects of the problem.

4.1. HES without a MD
The simplest limiting case corresponds to the

absence of a MD. In this case, the electron spin is con-
served both during propagation along the ring and
when entering or leaving a contact. There are no inter-
ference effects in this case since the spin is conserved,
and different spins are described by orthogonal spin-
ors. The transmission amplitude matrix in this case
has a diagonal form,

(15)

Expansion of the factors included in the diagonal
terms  in the Taylor series over t is the
sum over the number of windings.

Using the expressions (3), (6), (15) and averaging
over energy, we find that the FF does not depend on
the magnetic f lux and is related by a simple formula to
the transmission coefficient:

(16)

Here,  Equation (16) is
shown by the blue line in Fig. 3.

4.2. Metal Contacts and Strong MD
Contact, in which an electron ideally tunnels into

the HES, models a metallic contact. Accordingly,
r = 1 and, as a consequence, t = 0 due to the unitarity
of the contact scattering matrix. The last property
means that the electron passes through the HES only
from contact to contact, and there are no windings. If
there is a strong MD in one of the arms, , then
the electron propagating in this arm is reflected from
it and cannot reach the next contact. Thus, only elec-
trons that move along the bottom edge of the sample
(see Fig. 1) can pass through the interferometer. The
transmission coefficients of such a system are given by

 and . Therefore the shot
noise is absent,

(17)

because the passage of the electrons with spin “up” is
completely blocked, while spin “down” passes
through the edge of the sample without backscatter-
ing. Thus, a 2D TI with metal contacts, which has a
strong MD at the edge, is a noise-free ideal spin filter.
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4.3. Strong MD and General Contacts
For the case of an arbitrary coupling strength with

the contact, , and strong MD, , the
matrix of transmission amplitudes is easily calculated
by direct summation of the amplitudes and has the
form

(18)

There is no magnetic f lux in the denominator, because
the passage through the HES with a non-zero number
of windings includes only trajectories with a return to
the MD, and there is an odd number of windings

 of which n + 1 turns clockwise, and n counter-
clockwise. An example of two processes without spin
flip with 1 and 3 windings is shown in Fig. 4. The fac-
tor appears in the denominator t2exp[ikL +

 =  since each
clockwise passage (except for one excess passage) is
accompanied by a counterclockwise passage. In this
case, the FF after averaging in the temperature win-
dow is still independent of the magnetic f lux and has
the following form:
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Fig. 4. (Color online) Processes without spin f lipping after
transmission of the interferometer with 1 (a) and 3 (b)
windings for the case of a very strong defect.
(19)

This dependence is shown in Fig. 3 by the orange line.

4.4. Metallic Contacts and Magnetic Defect 
of Arbitrary Strength

We showed above that both in the absence of MD
and for very strong MD, the FF becomes zero at 
i.e., for a system with metallic contacts (see Eqs. (16)
and (19), respectively).

Let us now consider the metallic contact with 
and assume that the MD has an arbitrary strength,

 In this case, the spins are completely sep-
arated and windings are absent. Therefore, the matrix
of transmission amplitudes is calculated in a trivial
way

(20)

Accordingly, the FF has the form

(21)

As  increases from zero,  increases, reaches a max-
imum, then decreases and again becomes zero in the
limit of a very strong MD. Thus, there is an optimal
value of the MD strength, which gives the maximum
value of the FF,  Physically,
this case is equivalent to the case of two parallel chan-
nels—a completely ballistic one and a channel whose
resistance is determined by scattering on the MD. The
value of  is obtained by optimizing the expression

 with respect to Tθ = 

4.5. General Case
Several simple limiting cases, analyzed above, con-

tained no dependence on . However, a dependence
on  appears in a general case. General formula for

 is very cumbersome and we have provided it
in the supplementary materials (see expressions (S.7)–
(S.10) in the supplementary materials). This formula
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clearly shows the dependence on  For example, for
almost metallic contact, , for an arbitrary scat-
tering strength on a MD, the FF shows weak oscilla-
tions with 

(22)

Here,  is the probability of back-
scattering from a MD. More interesting is the opposite
case of an almost tunnel contact:  In this
case,

(23)

Although for the ideal tunnel contact, , we obtain
the universal value  which corresponds to
passing through localized independent levels in the
system [40], dependence of  on the f lux appears
when r deviates from unity. In particular, for the case
of a weak defect,  FF shows sharp resonances
of small amplitude around  and 

Note that the dependence of  on the magnetic
field turns out to be quite weak. Family of dependen-
cies of the FF for the magnetic f lux varying in the
range from zero to unity at  i.e., ,
t,  is represented in Fig. 3 by the green
broadened line. The width of this line shows the
change in  over the entire relevant range of magnetic
flux variation:  As can be seen, this width is
significantly less than the distance between the two
limiting curves corresponding to  and 
However, this dependence can be analyzed by study-
ing the normalized value  =  –

 For example,
from the formula (23) for  we obtain

i.e., sharp resonances at  and 

4.6. Comparison with a Conventional AB Interferometer
It is interesting to compare the obtained results

with those for the shot noise of current through a con-
ventional (non-helical) spinless single-channel AB
interferometer. The calculation can be carried out
completely similarly to the helical case (the conduc-
tance of such an interferometer was discussed in [41–
43]). In this paper we will limit ourselves to the case of
a ballistic conventional interferometer with identical
arms. We provide formulas for this case in the supple-
mentary materials (a more general case will be dis-
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Fig. 5. (Color online) Dependence of the FF on the trans-
mission coefficient of the interferometer: the blue curve is
the helical interferometer without a MD when  changes in
the range  (described by the formula (16)); the
orange and green curve correspond to a single-channel
conventional (non-helical) interferometer at  and
changing the tunneling parameter  in the range 
and , respectively (see supplementary materials).
At φ = 0 the orange and green curves “merge” and coin-
cide with the blue curve.

t
0 < < 1t

φ = 0.25
γ γ0 < < 1

γ ∞1 < <
cussed elsewhere). At , the dependence of the
FF on the conductance is given by the same formula
for the helical and the conventional interferometers
(see Eqs. (16) and (S.11)). However, in the conven-
tional interferometer, dependence on  occurs even
without impurities due to the possibility of backscat-
tering at the contacts. Therefore, at  the depen-
dencies cease to coincide, as illustrated in Fig. 5. Two
different branches of the dependence  arise due
to the fact that in a conventional interferometer the
same conductance can be realized by contacts of dif-
ferent types (see panels (a) and (b) of the Fig. S1 in the
supplementary materials). The most striking differ-
ence occurs at  In this case, in the conven-
tional AB interferometer, there is exact destructive
interference for any energy, i.e., the transmission
amplitude is identically zero at all energies,

 [38] (see also the discussion of the
consequences of this identity in [41, 42]). As a result,
in a conventional interferometer  for δφ =

 (see Eqs. (S.5) and (S.7) from the supple-
mentary materials and discussion there).

5. CONCLUSIONS

Important conclusions and predictions for possible
experiments can be made by analyzing Fig. 3. One can
see that for a metallic contact ( ), the introduc-
tion of a MD significantly increases the noise. For
tunnel contacts with very weak tunnel coupling
( ), the dependence on the strength of the defect

φ = 0

φ

φ ≠ 0

�^ 7( )

φ = 1/2.

φ ≡( , = 1/2) 0t e

→^ 1
φ − →1/2 0

→ 0t

→ 1t
is weak and, moreover, in a contrast to metallic con-
tact, the MD slightly reduces the FF.

To summarize, we have obtained an expression for
the FF of current f lowing along the edge of a 2D TI
with a MD in two-terminal geometry. The obtained
expression was analyzed in different limiting cases
depending on the strength of scattering by the MD and
the transparency of the contacts. The dependence of

 on the magnetic field has also been studied.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material
available at https://doi.org/10.1134/S0021364024600186.

ACKNOWLEDGMENTS

We are grateful to I.S. Burmistrov for fruitful discus-
sions.

FUNDING

This work was supported by the Russian Science Foun-
dation (project no. 20-12-00147-P, D.N. Aristov,
V.Yu. Kachorovskii), by the Council of the President of the
Russian Federation for State Support of Young Russian Sci-
entists and Leading Scientific Schools (project no. MK-
2918.2022.1.2, R.A. Niyazov, calculation of the Fano factor
in the general case, Section 4.5 and the supplementary
materials), and in part by the Foundation for the Advance-
ment of Theoretical Physics and Mathematics BASIS
(R.A. Niyazov).

CONFLICT OF INTEREST

The authors of this work declare that they have no con-
flicts of interest.

OPEN ACCESS

This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Com-
mons license, and indicate if changes were made. The images
or other third party material in this article are included in the
article’s Creative Commons license, unless indicated other-
wise in a credit line to the material. If material is not included
in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit
http://creativecommons.org/licenses/by/4.0/

^

JETP LETTERS  Vol. 119  No. 5  2024

http://creativecommons.org/licenses/by/4.0/


SHOT NOISE IN HELICAL EDGE STATES 379
REFERENCES
1. B. Bernevig and T. Hughes, Topological Insulators and

Topological Superconductors (Princeton Univ. Press,
Princeton, 2013).

2. M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045
(2010).

3. X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057
(2011).

4. C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801
(2005).

5. B. A. Bernevig, T. L. Hughes, and S. C. Zhang, Science
(Washington, DC, U. S.) 314, 1757 (2006).

6. M. Konig, S. Wiedmann, C. Brune, A. Roth, H. Buh-
mann, L. W. Molenkamp, X.-L. Qi, and S.-C. Zhang,
Science (Washington, DC, U. S.) 318, 766 (2007).

7. A. Roth, C. Brüne, H. Buhmann, L. W. Molenkamp,
J. Maciejko, X.-L. Qi, and S.-C. Zhang, Science
(Washington, DC, U. S.) 325, 294 (2009).

8. G. M. Gusev, Z. D. Kvon, O. A. Shegai, N. N. Mikhai-
lov, S. A. Dvoretsky, and J. C. Portal, Phys. Rev. B 84,
121302 (2011).

9. C. Brüne, A. Roth, H. Buhmann, E. M. Hankiewicz,
L. W. Molenkamp, J. Maciejko, X.-L. Qi, and
S.-C. Zhang, Nat. Phys. 8, 485 (2012).

10. A. Kononov, S. V. Egorov, Z. D. Kvon, N. N. Mikhai-
lov, S. A. Dvoretsky, and E. V. Deviatov, JETP Lett.
101, 814 (2015).

11. P. Delplace, J. Li, and M. Büttiker, Phys. Rev. Lett.
109, 246803 (2012).

12. F. Dolcini, Phys. Rev. B 83, 165304 (2011).
13. G. Gusev, Z. Kvon, O. Shegai, N. Mikhailov, and

S. Dvoretsky, Solid State Commun. 205, 4 (2015).
14. R. A. Niyazov, D. N. Aristov, and V. Y. Kachorovskii,

Phys. Rev. B 98, 045418 (2018).
15. R. A. Niyazov, D. N. Aristov, and V. Y. Kachorovskii,

npj Comput. Mater. 6 (2020).
16. R. A. Niyazov, D. N. Aristov, and V. Y. Kachorovskii,

Phys. Rev. B 103, 125428 (2021).
17. R. A. Niyazov, D. N. Aristov, and V. Y. Kachorovskii,

JETP Lett. 113, 689 (2021).
18. R. A. Niyazov, D. N. Aristov, and V. Y. Kachorovskii,

Phys. Rev. B 108, 075424 (2023).
19. R. A. Niyazov, D. N. Aristov, and V. Y. Kachorovskii,

JETP Lett. 118, 376 (2023).
20. N. Lezmy, Y. Oreg, and M. Berkooz, Phys. Rev. B 85,

235304 (2012).
21. A. Del Maestro, T. Hyart, and B. Rosenow, Phys. Rev.

B 87, 165440 (2013).
22. J. M. Edge, J. Li, P. Delplace, and M. Büttiker, Phys.

Rev. Lett. 110, 246601 (2013).
JETP LETTERS  Vol. 119  No. 5  2024
23. F. Dolcini, Phys. Rev. B 92, 155421 (2015).
24. E. S. Tikhonov, D. V. Shovkun, V. S. Khrapai, Z. D. Kvon,

N. N. Mikhailov, and S. A. Dvoretsky, JETP Lett. 101,
708 (2015).

25. J. I. Väyrynen and L. I. Glazman, Phys. Rev. Lett. 118,
106802 (2017).

26. S. U. Piatrusha, L. V. Ginzburg, E. S. Tikhonov,
D. V. Shovkun, G. Koblmüller, A. V. Bubis, A. K. Gre-
benko, A. G. Nasibulin, and V. S. Khrapai, JETP Lett.
108, 71 (2018).

27. K. E. Nagaev, S. V. Remizov, and D. S. Shapiro, JETP
Lett. 108, 664 (2018).

28. P. D. Kurilovich, V. D. Kurilovich, I. S. Burmistrov,
Y. Gefen, and M. Goldstein, Phys. Rev. Lett. 123,
056803 (2019).

29. V. D. Kurilovich, P. D. Kurilovich, I. S. Burmistrov,
and M. Goldstein, Phys. Rev. B 99, 085407 (2019).

30. B. V. Pashinsky, M. Goldstein, and I. S. Burmistrov,
Phys. Rev. B 102, 125309 (2020).

31. C.-H. Hsu, P. Stano, J. Klinovaja, and D. Loss, Semi-
cond. Sci. Technol. 36, 123003 (2021).

32. B. Probst, P. Virtanen, and P. Recher, Phys. Rev. B
106, 085406 (2022).

33. S. Munyan, A. Rashidi, A. C. Lygo, R. Kealhofer, and
S. Stemmer, Nano Lett. 23, 5648 (2023).

34. D. V. Khomitsky, A. A. Konakov, and E. A. Lavrukhi-
na, J. Phys.: Condens. Matter 34, 405302 (2022).

35. V. A. Sablikov and A. A. Sukhanov, Phys. Rev. B 103,
155424 (2021).

36. P. P. Aseev and K. E. Nagaev, Phys. Rev. B 94, 045425
(2016).

37. E. Olshanetsky, G. Gusev, A. Levin, Z. Kvon, and
N. Mikhailov, Phys. Rev. Lett. 131, 076301 (2023).

38. M. Büttiker, Y. Imry, and M. Y. Azbel, Phys. Rev. A 30,
1982 (1984).

39. M. J. M. de Jong and C. W. J. Beenakker, in Mesoscopic
Electron Transport, Ed. by L. Sohn, L. Kouwenhoven,
and G. Schön, Vol. 345 of NATO ASI Series E (Kluwer
Academic, Dordrecht, 1997), p. 225.

40. Y. Blanter and M. Büttiker, Phys. Rep. 336, 1 (2000).
41. A. P. Dmitriev, I. V. Gornyi, V. Y. Kachorovskii, and

D. G. Polyakov, Phys. Rev. Lett. 105, 036402 (2010).
42. A. P. Dmitriev, I. V. Gornyi, V. Y. Kachorovskii,

D. G. Polyakov, and P. M. Shmakov, JETP Lett. 100,
839 (2015).

43. A. P. Dmitriev, I. V. Gornyi, V. Y. Kachorovskii, and
D. G. Polyakov, Phys. Rev. B 96, 115417 (2017).

Publisher’s Note. Pleiades Publishing remains
neutral with regard to jurisdictional claims in
published maps and institutional affiliations.


	1. INTRODUCTION
	2. FORMULATION OF THE PROBLEM
	3. MODEL
	4. COMPUTATION OF THE FF
	4.1. HES without a MD
	4.2. Metal Contacts and Strong MD
	4.3. Strong MD and General Contacts
	4.4. Metallic Contacts and Magnetic Defect of Arbitrary Strength
	4.5. General Case
	4.6. Comparison with a Conventional AB Interferometer

	5. CONCLUSIONS
	REFERENCES

		2024-04-12T10:28:43+0300
	Preflight Ticket Signature




