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We study the near threshold behavior of cross sections of low-energy antiproton scattering off the ground and
excited states of positronium with zero total orbital momentum L = 0. In our computational experiment, the
existence of singularities called the Gailitis–Damburg oscillations above the thresholds of excited states of
positronium and antihydrogen atoms is confirmed. In the future the obtained results can be useful for devel-
oping proposals for improving the conditions of experiments with antimatter.
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Several experiments on antimatter based on the use
of the Antiproton Decelerator Facility are being
planned and performed at CERN. Two of them aimed
at the antimatter gravitational behavior—AEgIS [1]
and GBAR [2]—use, inter alia, the three-body reac-
tion

(1)

of antihydrogen  formation via antiproton  scatter-
ing off the gas of Rydberg positronium (Ps). In this
regard, a number of theoretical works which study the
reaction (1) have recently appeared. Of natural interest
here is to find a mechanism for increasing the reaction
rate of antihydrogen formation process used for the
production of antimatter atoms.

The researchers are interested in various singulari-
ties of the cross sections of scattering processes in the

 system. Among them are resonances, the near
threshold enhancement of cross sections, as well as the
less known above threshold singularities called the
Gailitis–Damburg (GD) oscillations, predicted for
the first time in [3, 4]. The latter arise due to long-
range dipole interaction between an excited atom
(either  or Ps) and a charged particle (  or ). The
GD theory [3–5] predicts two types of singularities: a
series of narrow resonances in energy regions below
the thresholds of excited states of atoms and cross sec-
tion oscillations above these thresholds. The existence
of the first of them, also called Feshbach resonances,
in the  and  systems has been reliably con-
firmed both experimentally and theoretically, by using
very accurate special methods for calculating the ener-
gies and widths of resonances [6–14]. The situation is
more complicated with singularities of another type—

oscillations of cross sections. Their existence in the
 system has been discussed in the works [15–17],

but only in the last of them the cross sections that are
consistent with the predictions of the GD theory have
been obtained.

The goal of this work is to study the above threshold
behavior of scattering cross sections in the  sys-
tem in the case of zero total orbital momentum of the
system L = 0. Our ab initio approach to solving the
multichannel quantum scattering problem in a system
of three particles is based on the solution of the Fad-
deev–Merkuriev (FM) equations, which are strictly
equivalent to the Schrödinger equation [18], in the
configuration space. These equations in the total
orbital momentum representation [19] are reduced to
a finite set of three-dimensional partial differential
equations. To solve boundary value problems for these
equations, we proposed and implemented an efficient
computational algorithm [20], which was tested, in
particular, in calculations of low-energy scattering in
the  system [21]. To calculate the obtained in this
work cross sections above the thresholds of excited
states of atoms, it is critically important to use the
asymptote of solutions to the FM equations, which
explicitly takes into account the long-range nature of
effective interaction between a neutral atom and an
incident (outgoing) particle. By this reason one needs
to modify the “standard” formulae for the asymptotic
behavior of wave functions [22, 14]. This modification
is a generalization to the three-particle case of the
results of our work [23]. Here we briefly discuss the
corresponding theory and apply it in a series of calcu-
lations of low-energy cross sections above the thresh-
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olds of the first few excited states of atoms in the 
system.

A system of three spinless nonrelativistic charged
particles with masses  and charges ,  is
considered. In what follows, the set of indices 
denotes one of the cyclic permutations of the set {1, 2, 3}
that enumerates the particles. Since in the triad 
the pair of particles  is completely determined by the
number  of the third particle, we will systematically
use this fact to identify pairs of particles. In the center
of mass frame, the position of particles is described by
a set of Jacobi coordinates. For the partition ,
they are defined as the relative position vectors
between  particles xα and between their center of
mass and the particle  yα. We use reduced Jacobi
coordinates , which are Jacobi vectors scaled
by factors  and , respectively. Reduced
masses of the pair  ( ) and the system “particle –
pair ” ( ) are expressed in terms of particle
masses  by standard formulae. For different values
of , the reduced Jacobi vectors are related by an
orthogonal transform , yβ =

 [18]. In what follows, the vector
lengths are denoted by the corresponding non-bold
letters, for example, . The states of a system
with total orbital momentum  are symmetric with
respect to the rotation of the system as a whole and for
this reason depend only on the three coordinates

 that deter-
mine the position of particles in the plane containing
them. In what follows, where it is due, it is assumed
that the coordinates  are expressed in terms of .

The FM equations for three charged particles [18,
24] in the case of L = 0 have the form [21, 25]:

(2)

Here the kinetic energy operators are given by

(3)

The potentials  represent the pair Coulomb interac-
tion . They are split into short-

range  and long-range parts 

(4)

using a function called the Merkuriev cut-off [18, 21].
Equations (2) can be summed up, which leads to the
Schrödinger equation for the wave function

− +e e p

αm αZ α = 1,2,3
αβγ

αβγ
βγ

α

α βγ( )

βγ
α

α α{ , }x y

αμ2 α βγμ ( )2
α αμ α

α α βγμ ( )

αm
α

β βα α βα α+= c sx x y

βα α βα α− +s cx y

α α= | |x x
= 0L

α α α α α α α α α= = θ ≡{ , , cos ( , )/( )}X x y z x yx y

βX αX

α α α β β β α α
β≠α

α α
α α α β β

β≠α β β

 
+ + − ψ 

 

− ψ





(l)

(s)

( ) ( , ) ( )

= ( , ) ( ).

T V x V x y E X

x yV x y X
x y

α α
α αα α α α

 ∂ ∂ ∂ ∂− − − + − ∂ ∂∂ ∂  

2 2
2

2 2 2 2
1 1= (1 ) .T z

z zy x y x

αV

α α α β γ αμ( ) = 2 /V x Z Z x

α
(s)V α

(l)V

α α α α α α α α+(s) (l)( ) = ( , ) ( , ),V x V x y V x y
, where  are the compo-
nents of the wave function given by the solution of the
equations (2).

At energy values E below the threshold of breakup
(ionization) of the system, the FM components

 at  are substantially different from
zero only in the asymptotic region Ωα =

 for . In  the FM compo-
nents can be represented in the form

(5)

In this formula the indices  enumerate the binary
scattering channels, i.e., the Coulomb bound states of
two particles of pair  with radial wave function 
and energy . The set of indices  defines the ini-
tial scattering channel.  denotes the standard
spherical harmonic. In formula (5) and below in the
text it is assumed that the indices  take integer values

 corresponding to channels which are open
at a given energy . The momentum  of an incident
(scattered) particle is determined by the energy con-
servation condition . Accordingly, the
channel is considered open if E – . The func-
tions  and  define the incident and scat-
tered waves. It is standard to choose these functions in
the form

(6)

where  are the Coulomb incoming and outgo-
ing waves [26], and the Sommerfeld parameter is
defined as . Indeed,
the use of functions (6) in (5) leads to the solution of
the FM equations with asymptotic behavior of the
form:

(7)

The cross section of the scattering process with initial
 and final  channels is expressed in a standard

way through the S-matrix element  [25].
In a system of three charged particles, the presence

of an effective dipole potential between the excited
bound state of pair  (atom) and particle  leads to the
fact that the representation (6) becomes insufficiently
accurate, since after substituting it into the FM Equa-
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tions the dipole potential is not compensated. For-
mally, the dipole potential can be obtained by substi-
tuting into Eqs. (2) the asymptotic expansion in  of
the sum of the long-range parts of the potentials

(8)

where  are Legendre polynomials. Indeed, from the
properties of the Merkuriev cut-off it follows that in

 the quantity , up to a term exponentially
decreasing in the variable , coincides with the
potential . Then the coefficients of the multipole
expansion (8) can be obtained by using the formula

(9)

In particular, the first two coefficients have the form

(10)

(11)

As is known from the theory of the FM equations, the
right-hand sides of the equations decrease exponen-
tially in . Substituting the first two terms of the
expansion (8) into FM equations (2), we obtain that in
the asymptotic region  the equations take the form

(12)

Let us now substitute the asymptotic representa-
tion (5) into Eqs. (12) and project them onto the
bound states wave functions . We use the follow-
ing well-known relations [26, 27]:

(13)

(14)

αΩ

∞
+ α α

β β β α +
β≠α α
 

�

(l) ( 1)
1

=0

( )( , ) = ,x P zV x y d
y

,
, ,

,

P,

αΩ β
(l)V

αy
βV

βα α βα α
β βα α βα α ≥

∞
βα α

α
βα α βα α

+

 
 
 



| | | |

=0

1 1=
| |

| |1= ( ).
| |

s y c x
x c s

c x
P z

s y s y

x y
,

,

,

α α α β γ α βγ≡ + μ(1)
( )= ( ) 2 ,C d Z Z Z

α α
α α α α βγ

α β γ

β β
γ

γ

γ γ
β

β

≡ − μ
+ +


× β − α −



+ γ − α − 



(2)
( )= ( 1) 2

sgn( )( 1)

sgn( )( 1) .

mD d Z
m m m

m
Z

m

m
Z

m

αΩ

αΩ

α νλα α α α
α α α α α

α α

α

 
+ + + − ψ 

 

 
 
 

0( )
2

3

( ) ( )

1= .

C D x zT V x E X
y y

O
y

φ 0n Y, ,

∂ ∂− θ θ
∂ θ ∂ θ

− + θ

2
0

0

(1 cos ) ( ,0)
cos cos

= ( 1) ( ,0),

Y

Y

,

,, ,

α α α
α α

 +− + + − ε φ 
 

2

2 2
( 1) ( ) ( ) = 0,n n

d V x x
dx x

,

, ,
JETP LETTERS  Vol. 119  No. 3  2024
(15)

(16)

As a result, we obtain that the functions  are
the linearly independent solutions to the close cou-
pling equations:

(17)

The elements of the matrix Aα, which specifies the
effective dipole potential, are given by the expressions

(18)

where

(19)

As is mentioned above, the incoming and outgoing

waves  defined in (6) do not accurately
enough describe the asymptotic behavior of the solu-
tion to the FM equations in , since they do not take
into account the presence of an effective dipole poten-
tial. Indeed, when substituting these functions into
Eqs. (17), the last dipole term of order  remains
uncanceled on the left side. The dipole term in the
asymptotic solutions of Eqs. (17) was partially
accounted for in the works [3, 4, 14, 22] by diagonal-
izing the block of the channel coupling matrix
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methods, which have led us to the following form of
the required asymptotic solutions

(20)

Here the matrices  and  are given by the for-
mulae

(21)

and new values of orbital momentum  are the
solutions to the quadratic equation

(22)

Finally, ,  are the eigenvalues and eigenvec-
tors of the matrix

(23)

Note that it is the second term in square brackets
in (20) that is responsible for the complete compensa-
tion of the dipole part of the interaction in the equa-
tions. A detailed derivation of the above asymptotic
solutions is beyond the scope of this work and will be
made in a separate publication.

The solutions (20) allow us to reformulate the
asymptotic boundary conditions (7) for the FM equa-
tions
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To solve the FM equations with asymptotic boundary
conditions (24), we use a numerical scheme, described
in detail in [20, 28]. The use of more accurate asymp-
tote (24) in calculations leads to a significant reduction
in the requirements for computer resources. This is
due to the fact that this asymptote is reached by the
FM components at distances significantly smaller
than the asymptote (7), the latter enforcing to use the
size of the computational domain for the variable  of
hundreds of atomic units [29]. When turning to suffi-
ciently small above threshold energies , which we
are interested in, this size grows unlimitedly, which
makes the calculation of scattering cross sections at
such energies almost impossible. In our work [23] we
have demonstrated this on the example of a model
problem of single-channel scattering off a dipole cen-
tral potential.

To obtain the presented in the article results, we
have calculated the scattering cross sections with an
accuracy of no worse than 1% and the high energy res-
olution: 6 × 10–6 a.u. when calculating cross sections
directly above the thresholds of excited states of atoms
and 6 × 10–5 a.u. in other cases. All presented values
are given in atomic units, cross sections are given in
units of . Binary scattering processes are specified
by the initial and final atomic states. For example,

 denotes an excited n = 2 (both  and p
states) antihydrogen formation process when antipro-
ton is scattering off the ground (n = 1) state of positro-
nium.

According to the GD theory [5], the near-thresh-
old oscillations in cross sections arise when some of
the new values of orbital momentum  are non real.
Above the threshold of the excited bound state of an
atom with principal quantum number n, in the case of
a single (among values with different ) non real
value , the theory predicts the following depen-
dence of the cross sections on energies :

(27)

Here, the constants , , , their own for each spe-
cific system and cross section, can be considered to be
independent of the energy  for small . A simple
calculation shows that in the system  for the first
few scattering channels of excited states Ps(2), (3)
and (4) the condition described above is realized.
The imaginary parts of the momentum  are
equal to 4.76914, 2.19836 and 3.99364, respectively.
Thus, in cross sections above the thresholds of these
states one can expect the presence of GD oscillations.

Figure 1 shows the elastic and quasi-elastic cross
sections for antiproton scattering off positronium Ps in
the first excited state between the thresholds Ps(2) and
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Fig. 1. (Color online) Cross sections of: (a) elastic Ps  Ps  and (b) quasi-elastic Ps  Ps  scattering. The dotted
line shows a possible form of the curve (27). Vertical dashed lines show the positions of the resonances [10–13].

→(2 )s (2 )s →(2 )s (2 )p

Fig. 2. (Color online) Antihydrogen formation cross sec-
tions Ps . Crosses mark points corresponding to
the work [16] (received from Dr. R. Lazauskas in private
communication). Vertical dashed lines show the positions
of the resonances [10–13].

→(1) H(1)
(3). In cross sections above the Ps(2) threshold, GD
oscillations are clearly visible with the location of
maxima being in good agreement with the law (27).
Indeed, for clarity, Fig. 1 also shows a graph of the
function (27) with empirically chosen values of con-
stants A,  and phase . The presented curves confirm
the previously obtained results [17], where the feasibil-
ity of the law (27) was verified on the same cross sec-
tions. The first wave of the oscillations presented in
Fig. 1 has also been obtained in the works [15, 16].

Let us now move on to a discussion of the antihy-
drogen  formation cross sections above various
thresholds of excited states of atoms. Figures 2 and 3
show the cross sections of the formation of antihydro-
gen  in the ground (1) and excited , 
states between the (2) and (3) states thresholds.
This is a refinement of our previously published results
[25], which have been obtained using standard asymp-
totic boundary conditions (7). These boundary condi-
tions have had to be imposed at very large intercluster
distances  to achieve convergence of results of calcu-
lations. The latter has required the involvement of very
serious computer resources, however, even this fact in
some cases has not allowed us to achieve the required
accuracy at low above-threshold energies. In addition,
in our previous work [21] in Fig. 4 the summed cross
section Ps(2) (1, 2) in the energy interval between
the thresholds Ps(2) and (3) is shown. We do not
duplicate it here to save space. Among all the men-
tioned cross sections, weak oscillations can be seen
only in Fig. 3 in the cross sections of the formation of
antihydrogen in excited states (2) above the corre-
sponding threshold. Due to small amplitudes of these
oscillations and small number of waves, it is difficult to
definitely conclude whether they are related to the
threshold behavior predicted by GD theory. However,
the existing oscillations are consistent with the law (27),
which is illustrated in Fig. 3. All the cross sections have
a fairly smooth character everywhere, except the vicin-

H

B φ

H
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ity of the below threshold resonances marked in the
Figs. 2, 3. In particular, we do not see in our results the
obtained in the works [15, 16] sharp peaks in the cross
sections Ps  just above the threshold of
the excited Ps(2) state.

Finally, in the cross sections of the formation of
antihydrogen in the second excited state (3), shown
in Fig. 4, we have discovered oscillations, the positions
of maxima of which satisfy the dependence (27) in
general. Note that the GD theory predicts small rela-
tive amplitudes of oscillations in the cross sections of
transition processes from old channels to new chan-
nels that emerge above the corresponding threshold
[5]. This statement, generally speaking, does not agree
with the form of cross section oscillations in Fig. 4,
since the latter have fairly large amplitudes. Perhaps
this circumstance is due to the fact that the GD theory,
as stated above, does not take into account the dipole
interaction between channels with different values of

→(1,2) H(1,2)

H
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Fig. 3. (Color online) Antihydrogen formation cross
sections Ps  (solid) and Ps
(dashed line). The dotted line shows a possible form of the
curve (27). Vertical dashed lines show the positions of the
resonances [10–13].

(3)

→(1) H(2 )s →(1) H(2 )p

Fig. 4. (Color online) Antihydrogen formation cross sec-
tions Ps  (solid), Ps  (dashed)
and Ps  (dash-dotted line). The dotted line
shows a possible form of the curve (27). Vertical dashed
lines show the positions of the resonances [10–13].

→(2 ) H(3 )s s →(2 ) H(3 )s p
→(2 ) H(3 )s d
n, although the magnitudes of the matrix elements

 in (18) with  are comparable with the
magnitudes of those with . One challenge for
future research may be to further identify the reasons
for this inconsistency. We also plan to generalize the
theory of taking into account dipole interaction to the
case of  and carry out corresponding high-preci-
sion calculations of scattering cross sections in the

 system. We hope that this will make it possible
to more definitely answer the question about the exis-
tence of GD oscillations in the total cross sections of
scattering processes which are directly measured in
experiment.
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