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The validity issues of some approximations widely used to describe subcycle pulse propagation in various
non-magnetic media are addressed. As the validity criteria we apply the fundamental electric area conserva-
tion rule, which directly follows from Maxwell’s equations in the 1D case. The general relations are derived
for the possible values of the electric area in different media. It is shown that several theoretical models do not
in general comply with the electric area conservation rule, which implies their limited applicability to cor-
rectly describe the subcycle pulse interaction with media. Therefore, any results obtained using such models
cannot be taken as scientifically valid and meaningful.
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INTRODUCTION

In recent years significant progress has been made
in generating femtosecond and even attosecond
extremely short light pulses [1–5]. The interest in their
generation is mainly driven by the possibility of using
such pulses to observe and control various ultrafast
processes in matter, up to the dynamics of electrons in
atoms and molecules [6–8]. Besides that, studying the
nature and fundamental aspects of nonlinear optical
phenomena on such timescales is of great interest as
well [9–11]. The point is that, as numerous studies
have shown, for such short light pulses the very nature
of various processes of nonlinear light-matter interac-
tion, such as the generation of optical harmonics [12,
13], the ionization of atoms [14, 15], coherent Rabi
oscillations [16, 17] or the non-resonant excitation of
quantum systems [18–20], undergoes fundamental
changes.

One of the most important consequences of the
unusual properties of the physics of subcycle pulses is
the need to introduce a number of new physical quan-
tities. These would have no significant practical rele-
vance for long pulses containing many cycles of optical
oscillations, but begin to play an important role in the

case of subcycle pulses. One of these quantities is the
electric pulse area defined by the expression

(1)

The electric pulse area (1) appears to be the most
important quantity for describing the properties of
unipolar half-cycle pulses, which represent the natural
limit of pulse shortening when decreasing the number
of optical cycles at a given central frequency. In partic-
ular, the value of the integral (1) determines the mag-
nitude of the mechanical momentum transferred by a
subcycle pulse when acting on a charged particle. It is
also a key parameter that quantifies the effect of sub-
cycle pulses on quantum systems in the case when the
excitation pulse duration is shorter than the periods of
resonant transitions in the system [18–21].

In addition, the electric pulse area (1) possesses the
important property of being vortex-free in any non-
magnetic medium:

(2)
which follows directly from Maxwell’s equation [22–
24]:
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In the simplest one-dimensional case, when lin-
early polarized light pulses with a plane wavefront
propagate along the z-axis, Eq. (2) reduces to the sim-
ple form [22–24]

(3)

Thus, in the one-dimensional case, Eq. (3) rep-
resents the fundamental conservation rule of the elec-
tric area in space. The conservation rule (3) has been
confirmed in many works on the subcycle pulse prop-
agation in different media, including linear conduct-
ing media [25] and media with resonant [24, 26] or
quadratic nonlinearity [27–31]. Due to its fundamen-
tal nature, the electric area conservation rule (3) can
be applied to test the correctness of different approxi-
mations used to describe the propagation of subcycle
pulses in different media.

In this paper, we will show what values the constant
on the right-hand side of Eq. (3) can attain upon the
propagation of subcycle pulses in non-magnetic media
with both bound and free charges. Based on the
obtained relations, we will analyze a number of
approximate theoretical models, which are widely
used to describe the interaction of subcycle pulses with
different media, for their compatibility with the con-
servation rule of the electric area (3). It will be shown
that for some approximations and some types of opti-
cal media violations of the conservation rule (3) are
observed. These indicate the limited applicability of
such approximate models and the possibility of
obtaining unphysical results when using them
uncritically.

GENERAL RELATIONS FOR THE VALUES
OF THE ELECTRIC AREA

Consider the propagation of linearly polarized light
pulses with a plane wavefront along the z-axis. The
spatiotemporal dynamics of the electric field is then
described using the one-dimensional wave equation:

(4)

where  is the macroscopic polarization corre-
sponding to bound charges in the medium,  is
the free-charge current density. In general, only at dis-
tances from the medium layer not exceeding the dif-
fraction length such a one-dimensional consideration
is valid. In addition, the one-dimensional model also
describes the propagation of pulses in coaxial wave-
guides with no cut-off frequencies, so that the propa-
gation of subcycle pulses, including unipolar pulses,
turns out to be effectively one-dimensional [32].

The total field  in the wave Eq. (4) is conve-
niently represented as the sum of the initial incident
pulse and the medium emission. For the field emitted
by a medium layer located in between the coordinates
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 and , the following general expression has been
obtained in [33]:

(5)

From Eq. (5) it is easy to obtain the expression for
the electric area (1) emitted by the entire medium
layer:

(6)

In the case of a dielectric medium layer with no free
charges in expressions (5) and (6) the first term disap-
pears . In the case of a metal or plasma layer,
where there are no bound charges, the macroscopic
polarization is to be set zero instead .

A number of important conclusions can be directly
drawn from the analysis of Eq. (6). Firstly, we note
that Eq. (5) describes the emission of a medium layer
both to the right and to the left. In this case, the radi-
ation in both directions is identical only in the case of
an infinitely thin medium layer. For a layer of finite
thickness, due to the interference of radiation from
different slices across the whole layer thickness the
fields radiated by the layer to the right and to the left
will be different. Nevertheless, their electric areas
given by Eq. (6) will still be equal. This result is due to
the infinite integration limits over time in Eq. (1), so
that any time delays between the radiation from differ-
ent parts of the medium do not play a role in the cal-
culation of the electric area. Thus, Eq. (6) represents
the electric area for both the radiation from a medium
layer to the right and the radiation to the left.

Let us further assume that a subcycle pulse propa-
gates in a dielectric medium without free charges, so
that . We assume that the medium is in an
equilibrium state with no induced macroscopic polar-
ization before the pulse arrival and returns to this ini-
tial state after the pulse passage due to the inevitable
presence of the relaxation of the macroscopic polar-
ization. Then the integral in the second term on the
right-hand side of (6) goes to zero:

(7)

The electric area radiated by the dielectric medium
layer, or any part of it, is therefore zero. It should be
noted that this conclusion is of a general type and is
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valid regardless of the specific characteristics of the
incident pulse or the pulse sequence entering the
medium and regardless of the parameters of the
dielectric itself.

Let us now turn to the conservation rule of the elec-
tric area in the form (3). Assume the dielectric layer to
have a finite thickness, the initial incident pulse with
the electric area , the field radiated from the
medium in the backward direction (i.e., reflected)
having the electric area , and the field trans-
mitted through the dielectric layer having the electric
area . Since from that side of the layer the ini-
tial pulse comes from there is first the initial pulse
passes through each spatial point and afterwards with
some delay the reflected field does, the conservation
rule of the electric area (3) takes the form

(8)

The obtained relation (8) is also valid at any point
inside the dielectric layer with the corresponding
change of notation for the terms, if we rewrite it in the
form:

(9)

The second term on the left-hand side of (9) is now
the electric area of the backward radiation from that
part of the layer which is located further along the
propagation direction of the initial pulse relative to the
given point in space. At the same time, the third term
on the left-hand side of (9) is now the electric area of
the forward radiation from the part of the layer that is
located earlier in the propagation direction of the ini-
tial pulse relative to this point in space. Note that the
first term on the left-hand side of (9), i.e., the electric
area of the initial pulse, is by definition constant and
does not depend on the z coordinate, unlike the other
two terms.

The field radiated from a dielectric layer or any part
of it, both forwards and backwards, always has zero
electric area according to Eq. (7). Hence, for any
dielectric medium in Eq. (9) we obtain:

(10)

Accordingly, Eq. (9), which expresses the electric area
conservation rule, takes the form:

(11)

Thus, the electric area as a function of the coordi-
nate in space can take as its constant value any one
equal to the electric area of the initial pulse incident on
a dielectric medium. Note that the obtained expres-
sions (7), (10), (11) are valid only for a dielectric
medium in which there are only bound charges, but
are not obeyed in the presence of free charges in the
medium, i.e., if  on the right-hand side in
Eqs. (5) and (6). In the following chapters, the
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obtained relations (6)–(11) will be applied to analyze
the correctness of several approximate approaches for
the theoretical description of the propagation of sub-
cycle pulses in various linear and nonlinear media.

To illustrate the obtained relation (11), let us con-
sider the propagation of a unipolar half-cycle pulse
through a layer of a two-level medium. The response
of a two-level medium is described by the standard
equations for the dynamics of the medium density
matrix [34]:

(12)

where  is the electric field strength,  is the induced
macroscopic polarization of the medium,  is the
off-diagonal element of the density matrix of the two-
level medium,  is the population differ-
ence in the two-level medium,  is the dipole
moment of the resonant transition,  is the transi-
tion frequency,  is the particle density,  is the
equilibrium population difference in the absence of
the electric field (  for an absorbing medium), 
is the lifetime of the upper level,  is the phase relax-
ation time in the medium, c is the speed of light in vac-
uum,  is the reduced Planck’s constant.

The system of Eqs. (12) was solved numerically
together with the wave Eq. (4) in the absence of any
currents . In the calculations we considered
the layout, when a unipolar half-cycle pulse of a non-
zero electric area (1), i.e., a pulse of Gaussian shape,
hits normally an optically thick layer of a two-level
medium:

(13)

with the pulse amplitude  and the duration . The
results of the numerical simulations are shown in
Fig. 1. The amplitude of the initial pulse  and the
spatial density of particles  were chosen as variable
parameters. The thickness of the medium layer was
chosen to be one order of magnitude larger than the
wavelength of the resonant transition. As can be seen
from Fig. 1, the conservation rule of the electric area
in space (3) is satisfied for all parameter values consid-
ered. Moreover, the obtained constant values of the
electric area are in all cases exactly equal to the electric
area of the initial incident pulse (13) (the correspond-
ing values are represented by crosses on the vertical
axis in Fig. 1). Thus, the results of the numerical sim-
ulations are in exact agreement with the general ana-
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Fig. 1. (Color online) Spatial dependence of the electric
area (1) when a unipolar half-cycle pulse of Gaussian
shape (13) passes through a layer of a two-level medium.
The thickness of the medium layer  μm, the

medium parameters  D,  s–1, ,
 fs,  fs, the duration of the incident pulse

 fs. The incident pulse amplitude  and the spatial
density of resonant centers  were varied. Crosses of the
respective colors on the vertical axis mark the values of the
electric area of the initial incident pulses (13) for all con-
sidered parameter sets. The black dashed vertical lines
indicate the boundaries of the medium layer.
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lytical results obtained above and given by Eqs. (10)
and (11).

PROPAGATION OF SUBCYCLE PULSES 
IN A TWO-LEVEL MEDIUM

We start our consideration with approximate mod-
els of the coherent propagation of subcycle pulses in a
resonant optical medium. The simplest approach, but
also the most important from a methodological view-
point, is to describe the medium in terms of a two-
level model. This situation was first studied in detail in
the works of E.M. Belenov and A.V. Nazarkin [35–
37], where the propagation of subcycle pulses in an
amplifying or absorbing two-level resonant medium
was studied in the limit of pulse durations  much
shorter than the period of the resonant transition of
the medium, i.e.,

In this limiting case, a sine-Gordon equation of the
following form was obtained for the spatiotemporal
dynamics of the electric field in the medium:

(14)

τ
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where the following quantity is used:

i.e., the time integral of the electric field with a finite
upper limit. Here d12 is the dipole moment of the res-
onant transition in a two-level medium, α is the cou-
pling factor:

the sign of which depends on whether the medium is
amplifying or absorbing.

Let we now consider the limit  in the sine-
Gordon equation (14). Assume that we are dealing
with limited in time electromagnetic pulses, so that the
electric field everywhere goes to zero at . Such
a complete damping of the field in any real medium is
provided by the dissipation mechanisms inevitably
present in it, leading to a gradual decay of the field in
the course of time. As the electric field goes to zero at

, the time-domain derivative of  and
hence the second term on the left-hand side of
Eq. (14) also goes to zero. The value  in such a
limit turns into the electric area (up to a constant fac-
tor), and Eq. (14) takes the form:

(15)

The comparison of the conservation rule for the
electric area (3) and the sine-Gordon equation for the
electric area (15) shows that these equations are com-
patible only if the right-hand side of Eq. (15) equals
zero:

(16)

i.e., only if the electric area is constant in space and is
a multiple of  (in the units ). However, accord-
ing to the obtained expression (11), the value of the
constant in Eq. (3) can take any value in a dielectric
medium. In fact, Maxwell’s equations in their general
form do not impose any restrictions on the possible
values of the electric pulse area and, in particular, do
not imply any quantization of this quantity. On the
contrary, Maxwell’s equations allow the existence and
stable propagation of any unipolar pulses in space at
the speed of light, regardless of the value of their elec-
tric area [38–40].

The reason for this contradiction in this case is the
elimination of all relaxation terms in the equations for
the response of a two-level resonant medium upon the
derivation of Eq. (14). As a result, under such condi-
tions only those pulses can stably propagate in the
two-level medium, at the trailing edge of which the
induced medium polarization returns exactly to its ini-
tial zero value, i.e., when the right-hand side of (15)
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Fig. 2. (Color online) Spatial dependence of the electric
area (1), when a unipolar half-cycle pulse of Gaussian
shape (13) passes through a layer of a two-level medium
described by the sine-Gordon equation (14). The thick-
ness of the medium layer is  μm, the medium

parameters are  D,  s–1, 
1019 cm–3, , and the duration of the incident pulse is

 fs. The amplitude of the incident pulse  was var-
ied. Crosses on the vertical axis indicate the values of the
electric area of the initial incident pulses (13) for the corre-
sponding values of their amplitude . The black vertical
lines indicate the boundaries of the medium layer.
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vanishes. At the same time, keeping all relaxation
terms in the equations for the medium response would
avoid the appearance of any artificial quantization of
the electric area according to Eq. (16). Note also that
if the relaxation processes in the medium are
neglected, the medium oscillators, excited even by a
very short pulse, can oscillate infinitely long, while
continuously emitting electromagnetic waves, which
would also violate the energy conservation law.

It is worth noting that, although Eq. (15) is simpler
than the sine-Gordon equation (14) and allows us to
easily find spatially uniform solutions for the electric
area (16), it is not suitable for the numerical simula-
tions. Indeed, in order to find a particular solution of
Eq. (15) it is necessary to set the initial conditions at
some point in space. For this purpose, it is not suffi-
cient to know only the electric area of the initial pulse
incident on the medium. In fact, on the side of the
medium from which the initial pulse is incident, the
incident pulse first passes through each point and then
with some delay the reflected field passes. Therefore,
in order to set the initial conditions for the electric area
at any point in Eq. (15), we need to know in advance
the value of the electric area of the reflected (or trans-
mitted) field. However, these values can only be
obtained by numerically solving the sine-Gordon
equation (14) for the electric field strength. Hence, the
general sine-Gordon equation (14) must be solved in
order to find out the electric area .

Figure 2 shows the results of the numerical model-
ing of a unipolar half-cycle pulse (13) passing through
a layer of a two-level medium by means of the sine-
Gordon equation (14). As can be seen from Fig. 2,
although the electric area appears to be constant in
space, it only takes discrete values according to
Eq. (16). In this case, the specific value of the electric
area is determined by the value of the electric area of
the initial incident half-cycle pulse (13). More pre-
cisely, for each of the solutions (16) there is an interval
of values of the electric area of the initial pulse (13),
within which the electric area  converges exactly
to this solution out of the discrete set (16). It is import-
ant to emphasize that, as shown in Fig. 2, the resulting
value of the electric area in space is in general signifi-
cantly different from the electric area of the initial
incident pulse, which contradicts the exact analytical
solution (11).

Our conclusion is therefore that the sine-Gordon
equation (14) is not in accordance with the fundamen-
tal conservation rule of the electric area (3). This
means that the sine-Gordon equation (14) can only
have a limited applicability range and all its solutions
must be modified to ensure that the fundamental con-
servation rule of the electric area is fulfilled.

( )ES z

( )ES z
UNIDIRECTIONAL APPROXIMATION
FOR SUBCYCLE PULSES

The most commonly used approximation to
describe the propagation of ultra-short pulses is the
slowly varying envelope approximation (SVEA).
However, for subcycle pulses this approximation
becomes obviously incorrect already for pulses with
just a few cycles, and even more so for subcycle pulses.

The unidirectional approximation [41, 42] is often
used as a possible alternative that allows simplification
of the corresponding theoretical models for subcycle
pulses. This approximation is based on the neglecting
of the backward propagating wave and implies that the
field in the medium moves only in the direction of the
incident pulse with a velocity equal to or close to the
respective linear velocity.

As shown by the authors in [43], for the propaga-
tion of a half-cycle unipolar pulse in the framework of
the unidirectional approximation in plasma the elec-
tric area is not conserved. Instead, it decreases expo-
nentially as the pulse moves deeper into the plasma. At
the same time, even in the unidirectional approxima-
tion, the fundamental conservation rule (3) remains
valid for the propagation of a half-cycle unipolar pulse
in a dielectric medium [44].

To clarify the origin of the resulting deviations from
the conservation rule (3), we first recall the results
obtained earlier in this paper for dielectric media.
Namely, as mentioned above, radiation from a dielec-
JETP LETTERS  Vol. 119  No. 2  2024
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tric layer, or any part of it, both forward and backward
always has zero electric area according to Eq. (7). In
particular, this means that the electric area of that part
of the field going in the backward direction is zero, see
Eq. (10). Thus, neglecting the presence of the
reflected wave does not lead to a violation of the con-
servation rule of the electric area (3). Thus, in the case
of subcycle pulse propagation in a dielectric medium,
applying the unidirectional approximation does not
lead to any deviations from the exact conservation
rule (3).

Let us now consider the opposite situation, when a
subcycle pulse propagates in a plasma or metal with no
bound charges, i.e., , so that there are only
free charges. In such a case, only the first term in
Eq. (6) remains, which contains the current density of
free charges  under the integral sign, and this
integral in Eq. (6) in general does not equal zero.
Thus, the electric area of the plasma layer emission is
different from zero. The reason for this peculiarity can
be understood directly from Eq. (6). In fact, the first
term in (6) represents the total charge passing through
the cross section of the plasma layer perpendicular to
the polarization direction of the incident field. Due to
the one-dimensional problem setup, which implies
infinitely large sizes of the medium layer in transverse
dimensions, and due to the presence of free charges in
the medium, such a total charge will generally be non-
zero. This means that there is a parallel charge transfer
in the transverse plane, which in the one-dimensional
problem does not lead to the formation of uncompen-
sated charges anywhere. Instead, it determines a non-
zero value of the electric area of the emitted field from
a metal or plasma layer. It should be noted that this
result is valid not only for a medium in which free
charges were initially present, but also for a dielectric
medium in which the ionization and formation of free
charges occur under the action of the incident subcy-
cle pulse itself.

In this case, the conservation rule in the form (8) or
(9) is still valid in the sense discussed above for the case
of a dielectric medium. However, in the case of a
plasma medium, the electric area of the reflected field

, i.e., the field radiated in the backward
direction by a medium layer or any part of this layer, is
different from zero. Hence, according to (8) and (9)
the electric area of the field that has passed through
the plasma layer or any part of this layer is different
from the electric area of the initial pulse  (or
series of pulses) incident on the medium.

This result means that neglecting the presence of
the reflected field upon the propagation of subcycle
pulses in a plasma or metal inevitably leads to a devia-
tion from the exact conservation rule of the electric
area (3). Since the unidirectional approximation
implies that the reflected (backward) wave is not taken
into account, we conclude that the electric area con-
servation rule (3) will always be violated when describ-
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( , )j z t
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ing the one-dimensional propagation of subcycle
pulses in a plasma or metal within the framework of
the unidirectional approximation. This conclusion is
in agreement with the results of [43] and the subse-
quent comment [45]. At the same time, it explains the
reason for the alleged violation of the conservation
rule (3) obtained by the authors in [43].

PROPAGATION OF SUBCYCLE PULSES
IN A LINEAR DISPERSIVE MEDIUM 

(PLASMA)
Let us further consider the propagation of subcycle

pulses in a linear medium with strong dispersion. We
start from the results of [46], where some exactly solv-
able models of the interaction of ultra-short pulses
containing one or more field oscillations with some
classes of dielectrics and conductors were investigated.
The one-dimensional Klein–Fock–Gordon equation
for the propagation of a plane linearly-polarized wave
in a cold, collisionless, homogeneous and fully ion-
ized gas plasma is used there as the basic universal
model for describing unsteady wave processes in
media with dispersion. The induced current density

 in such a plasma is given by the following
equation:

(17)

where  is the plasma frequency. Substituting this
expression into the right-hand side of the wave
Eq. (4), we obtain:

(18)

Let us now integrate the obtained Eq. (18) over
time in infinite limits, taking into account that all pro-
cesses of pulses interaction with the medium are lim-
ited in time. Then the electric field and its time-
domain derivative become zero everywhere at 
so that the following equation for the spatial distribu-
tion of the electric area  is obtained from
Eq. (18):

(19)

The general solution of Eq. (19) has the form:

(20)

Except for the trivial special case ,
Eq. (20) obviously contradicts the conservation rule of
the electric area (3).

The above consideration once again demonstrates
the importance and usefulness of the conservation
rule of the electric area (3). In this case, the discrep-
ancy is due to the neglecting the current damping in a
dispersive medium. Indeed, we can take into account
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Fig. 3. (Color online) Spatial dependence of the electric
area (1) when a unipolar half-cycle pulse of Gaussian
shape (13) passes through a layer of the dispersive plasma
at different values of the relaxation coefficient . The
thickness of the medium layer  μm, the plasma fre-

quency of the medium  s–1, the incident pulse

has the duration  fs and the amplitude  ESU.

γ
= 20L

Ω × 14= 3 10

τ = 1 5
0 = 10E
the collisions in the plasma by adding a relaxation term
to the right-hand side of the dynamical Eq. (17) with
the effective relaxation coefficient :

(21)

so that instead of Eq. (19) we obtain:

(22)

Here, the expression on the right-hand side tends to
zero at  since the integral over time in the last
factor tends to a finite constant value due to the
assumed limited pulse duration in time. The general
solution of Eq. (22) is then written in the following
simple form:

(23)

where it is necessary to set  in order to avoid the
infinite increase or decrease in the electric area in
space, which has no physical meaning. This is now
exactly the conservation rule of the electric area (3),
which confirms the fundamental importance of taking
into account the relaxation processes in a dispersive
medium to obtain a correct description of subcycle
pulse propagation in it.

In order to verify the obtained relations (22) and
(23), a joint numerical solution of Eqs. (4) and (21)
was performed. The unipolar half-cycle pulse (13) was
again used as the initial incident pulse. The results of
the numerical simulations for different values of the
relaxation coefficient  are shown in Fig. 3. It can be
seen that the electric area conservation rule (3) is
exactly fulfilled according to Eq. (23). At the same
time, the specific value of the constant on the right-
hand side of Eq. (3) depends strongly on the value of
the relaxation coefficient , and the value of the elec-
tric area decreases rapidly as the relaxation in the
plasma decreases.

At the same time, the numerical solution of
Eq. (18) for a collisionless plasma (i.e., at zero relax-
ation coefficient ) shows that for any values of the
parameters of the plasma layer and the incident pulse,
the electric area goes everywhere to zero, i.e., this
solution corresponds to the general solution (20) in the
special case when . The reason for this
behavior of the electric area can be understood from
the following general considerations. According to the
general solution of the wave Eq. (5), the plasma layer
keeps radiating until the density of the free-charge
currents becomes zero everywhere, i.e., it must be

 at . However, by direct integration
of Eq. (17) it is easy to obtain that:

(24)
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so that at  the current density is directly pro-
portional to the value of the electric area at this point.
Then it follows directly from Eq. (24) that the zero
value of the current density entails the zero value of the
electric area in the whole space. Thus, although the
general solution (20) means in general spatially-inho-
mogeneous solutions for a plasma layer without losses,
only solutions with zero electric area are physically
possible in such a medium.

It is also of interest to consider how the value of the
electric area (constant in space) shown in Fig. 3
depends on the thickness of the plasma layer. The cor-
responding numerical simulation results are shown in
Fig. 4 (in logarithmic scale) at a fixed value of the
relaxation coefficient  (red circles). Note that the val-
ues of the electric area shown in Fig. 3 are equal, in
particular, to the electric area of the pulse transmitted
through the plasma layer. Indeed, from the side of the
plasma layer opposite to that from which the initial
pulse (13) arrives, only the field that has passed
through the entire plasma layer passes through each
point. Hence, the graph in Fig. 4 shows, among oth-
ers, the dependence of the electric area of the pulse
transmitted through the plasma layer on the thickness
of this layer.

The dependence of the electric area of the trans-
mitted pulse on the thickness of the plasma layer,
shown in Fig. 4, can be described analytically. To do
this, consider the standard problem of the normal
incidence of a plane wave of the frequency  on a
plane-parallel plate of the thickness  made of a mate-
rial with the refractive index . If the amplitude of
the incident plane wave is equal to , the amplitude

→ +∞t

γ

ω
L

ω( )n
incA
JETP LETTERS  Vol. 119  No. 2  2024



ELECTRIC AREA CONSERVATION RULE AND THE VALIDITY 101

Fig. 4. (Color online) Dependence of the constant value of
the electric area on the right-hand side of Eq. (3) on the
thickness of the plasma layer when a unipolar half-cycle
pulse of Gaussian shape (13) passes through it: the results
of numerical simulations (red circles) and the exact analyt-
ical solution (27) (blue solid line). The green dashed line
shows the approximate analytical solution (28) obtained in
[43] under the unidirectional approximation. The plasma

frequency of the medium is  s–1, the relax-

ation coefficient is  s–1, the incident pulse has the

duration  fs and the amplitude  ESU. The
cross on the vertical axis indicates the value of the electric
area of the initial incident pulse (13).

Ω × 14= 3 10

γ 14= 10

τ = 1 5
0 = 10E
of the transmitted wave  is determined by the
expression [47]

(25)

The refractive index for a plasma or metal within the
Drude–Lorentz model has the form:

(26)

which follows directly from Eq. (21).
Let us now go in Eq. (25) and (26) to the limit

. As can be seen from Eq. (1), the electric area
is actually the Fourier spectral component of the field
at the zero frequency. Thus, in this limit, the spectral
components  and  turn into the electric areas of
the incident pulse  and the field  that has passed
through the layer, respectively. Let us now consider
what happens to the right-hand side of Eq. (25) in this
limiting case . By combining (25) and (26) and
omitting the terms with powers of  higher than one,
we can easily obtain the limiting expression:

(27)
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Expression (27) thus represents the value of the
constant on the right-hand side of the conservation
rule (3) in the case of subcycle pulse propagation
through a plasma or metal layer described by the
Drude–Lorentz model (21), (26).

The analytically calculated dependence (27) is
shown in Fig. 4 by a solid blue line. It is easy to see that
the numerical results are in perfect agreement with the
theoretical curve (27). Note that in the limit 
(ideal collisionless plasma) the expression on the
right-hand side of (27) goes to zero, which is also in
full agreement with the numerical simulation results
described above.

The obtained dependence can be confronted with
the results of [43], where an analytical solution for the
electric area of a pulse propagating in a plasma was
obtained in the unidirectional approximation. In par-
ticular, in the notation of the model used (21), the
dependence of the electric area of the propagating
pulse on the propagation length obtained in [43] can
be written in the form

(28)

i.e., the electric area decreases exponentially as the
pulse propagates in the layer. The dependence (28) is
also shown in Fig. 4 (green dashed line) for clarity. As
can be clearly seen from the comparison of two curves
in Fig. 4, the unidirectional approximation describes
very poorly the real behavior of the electric area vs the
thickness of the plasma layer. Upon the exact solution
of the full (bidirectional) wave Eq. (4) the electric area
of the transmitted pulse decreases when increasing the
layer thickness much slower than the exponential law
(28) according to the dependence, which turns out to
be quite close to the power-law one . The main
reason for such a significant discrepancy, as already
noted in the previous section, is the complete neglect-
ing the backward wave within the unidirectional
approximation. In fact, the unidirectional approxima-
tion is based on the assumption that the macroscopic
polarization induced in the medium provides only a
small perturbation of the incident pulse. In the case of
a plasma layer with the parameters shown in Figs. 3
and 4, the significant ref lection occurs at a layer thick-
ness of just about one micron. Thus, the assumption of
a small perturbation of the incident pulse by the
medium layer is obviously violated.

Finally, it is also worth noting that in the limit
 the following asymptotic expression is valid for

the wavenumber of a monochromatic wave in a plasma
or metal with the dispersion relation (26):

i.e., the wavenumber vanishes in this limit. This result
means that, when solving the problem of a monochro-

γ → 0

 Ω− γ 

2
( ) = (0)exp ,

2E ES z S z
c

−1L∼
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matic plane wave propagation through a medium layer
(26), the amplitudes of both the forward and backward
waves inside the layer, which are proportional to

 in the limit  do not depend on the coor-
dinate z, i.e., they are constant in space (inside the
medium layer). This conclusion also contradicts the
approximate solution (28), according to which the
electric area of the forward wave within the medium
layer (26) should decay exponentially.

CONCLUSIONS

In conclusion, this paper has theoretically
addressed the correctness issues of approximate theo-
retical models used to describe the propagation of
extremely short pulses in various media. The funda-
mental conservation rule of the electric area, derived
directly from Maxwell’s equations in the one-dimen-
sional setup, has been used as the main criterion of
correctness.

The analysis performed has shown that some com-
monly used approximations lead to the violation of the
electric area conservation rule. In particular, this
applies to the sine-Gordon equation for coherent
propagation of subcycle pulses in a two-level resonant
medium and the unidirectional approximation for the
propagation of subcycle pulses in metals or plasma.
The main reasons for the violation of this conservation
rule are either the neglect of dissipation processes in
the medium or the neglect of the backward wave. In
these cases, it is necessary to correct all the solutions
obtained within the framework of these approximate
models by adding some extra correction terms that
guarantee the conservation of the electric area.

It is important to note that the proposed approach
can be used directly to determine the applicability lim-
its of any other approximation for the propagation of
subcycle pulses in arbitrary linear and nonlinear
media. Such an analysis can also be based on the use
of other conservation laws, in particular the energy
conservation law. However, in the case of subcycle
pulses it is the electric area (1) which turns out to be
the most convenient quantity for checking the accu-
racy of theoretical models due to its linear dependence
on the electric field and its crucial role in the pulse
interaction with quantum systems.
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