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Two-dimensional Ising superconductivity formed in NbSe2, MoS2, WS2, etc. transition-metal dichalco-
genides is considered. For the superconducting state, the effective low-energy action for phases of the order
parameters has been obtained and collective modes in the system have been studied. It has been shown that
the system contains not only the Goldstone mode but also the Leggett mode with a mass related to the dif-
ference between the singlet and triplet pairing constants. The effect of a low magnetic field parallel to the
plane of the system has also been discussed.
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1. INTRODUCTION

Two-dimensional transition-metal dichalco-
genides have recently attracted attention due to their
extraordinary properties and to their hypothesized
potential application in nanoelectronics (see, e.g., [1]
and reference therein). These materials have the gen-
eral formula MX2, where M is a transition metal (nio-
bium Nb, molybdenum Mo, and tungsten W) and X is
a selenium Se, sulfur S, or tellurium Te atom. There
are several isomers with such a chemical formula, but
isomers with the unit cell consisting of the M atom
between two X atoms are considered in this work. As a
result, a lattice with the  symmetry, where the cen-
ter of inversion is absent, is formed [2–4].

In this work, the main interest is focused on super-
conductivity observed in such systems, in particular, in
NbSe2 [5], MoS2 [6, 7], and WS2 monolayers [8].
Superconductivity in such systems has a number of
interesting properties due to the strong internal spin–
orbit coupling. In particular, it leads both to the orien-
tation of electron spins perpendicular to the system
plane and to the stability of the superconducting order
with respect to the in-plane magnetic field. For this
reason, such systems are called Ising superconductors.
Unconventional superconductivity with triplet pairing
between electrons can also be observed in such systems
[3, 4].

It is noteworthy that systems considered in this
work are purely two-dimensional materials, where
various f luctuations play a significant role, and the
formation of a superconducting state should occur
through the Berezinskii–Kosterlitz–Thouless transi-
tion, where quantum vortices play a key role [9].

The aim of this work is to discuss a possible super-
conducting state in such systems and to derive an
effective low-energy action describing f luctuations in
Ising superconductors. The spectrum of low-energy
long-wavelength collective excitations with frequen-
cies smaller than the superconducting gap is also
determined and analyzed. Possible consequences from
the presented physical picture of the superconducting
state are finally discussed.

2. ISING SUPERCONDUCTOR
In this work, NbSe2, MoS2, WS2, etc. transition-

metal dichalcogenide monolayers are considered. The
center of inversion is absent in these materials, but
time reversal invariance nevertheless holds. The band
Hamiltonian of this system has the general form

(1)

Here, the internal Zeeman spin–orbit coupling with
 is present in addition to the standard term

with . Due to symmetry,  is directed along
the z axis perpendicular to the sample plane. Figure 1
shows the Brillouin zone of this system and Fermi
contours for different directions of the (pseudo)spin of
an electron excitation. The sign of the spin–orbit split-
ting varies from point to point inside the Brillouin
zone in such a way that the time reversal invariance is
not broken and the Kramers degeneracy of the spec-
trum exists. Each state with the quasimomentum p
corresponds to the state with the quasimomentum –p,
opposite spin, and the same energy. The valence band
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Fig. 1. (Color online) Brillouin zone of the system under
consideration. Solid (dashed) lines are the Fermi contours
for spin-up (spin-down) states. Two types of pairing are
also illustrated.
crosses the Fermi level several times, forming pockets
near the K, K', and Γ points. The authors of [2–4, 10]
discussed that electrons near the K and K' points form
one subsystem, whereas electrons near the Γ point
constitute the other subsystem, and these two systems
are weakly coupled to each other. Furthermore, the
superconducting gap in the Γ subsystem can be much
smaller [10]. For this reason, only states near the
Fermi surface in the vicinities of the K and K' points
and superconducting states formed at the interaction
between them. The effective Hamiltonian of this sub-
system has the form

(2)

Here, ( ) are the operators describing
states near the K (K') point, mα and m–α are the effec-

tive masses, and  and 

(  and ), where ηSO speci-
fies the magnitude of the internal spin–orbit coupling,
are the distances from the energies of electron states
with the (pseudo)spin-up and -down near the K (K')
point to the bottom of the band, respectively. It is
assumed that the effective masses m↑ and m↓ are
slightly different; therefore, the densities of states ν↑ =
m↑/(2π) and ν↓ = m↓/(2π) near the corresponding
Fermi surfaces are also slightly different. For further
consideration, field operators are introduced in the
form
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The Coulomb interaction is described by f luctuations
of a scalar potential induced by electrons of the sys-
tem. The interaction term in the Hamiltonian at spa-
tial scales exceeding the lattice constant has the form

(3)

where  is the
electron density with the spin  and  is the compen-
sating background of ions. The interaction with the
external vector potential A(x) is introduced by the
standard long derivative .

To examine superconducting properties of the con-
sidered system, it is necessary to take into account the
pairing interaction between electrons. Strictly speak-
ing, its form and even mechanisms are incompletely
known. In particular, ab initio calculations indicate
that not only the electron–phonon coupling but also
exchange by spin degrees of freedom can play an
important role in pairing [10]. The below analysis is
based on symmetry reasons. For these reasons, time
reversed states can be paired. This means that a spin-
up electron from the K valley is paired with a spin-
down electron from the K' valley and vice versa. Thus,
the system has two types of Cooper pairs with the cre-
ation operators (see Fig. 1)

(4)

It should be emphasized that these types of pairing are
independent because electrons from different valleys
are paired. These Cooper pairs can form a singlet

 and a triplet 
from the trivial representation. In the general case,
pairing can occur in all channels allowed by the sym-
metry of the crystal lattice. In this work, it is assumed
that the pairing interaction exists only in the singlet
and triplet channels indicated above:

(5)

If this part of the Hamiltonian is expressed in terms of
electron operators, then it can be seen that the contri-
butions proportional to gs + gt enter in the form of the

combinat . They can be inter-
preted as a density–density interaction caused by the
exchange by phonons. The а 
combinations, which can be attributed to the exchange
by spin f luctuations, are also present. When the con-
tribution of such processes is small, the singlet and
triplet coupling constants will be close to each other;
i.e., gs – gt  gs. The case where these two coupling
constants coincide can be considered as the first
approximation, and the case where this difference is
small but nonzero can be then analyzed.
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3. CASE OF IDENTICAL COUPLING 
CONSTANTS

The case gt = gs is considered first. The subject of
this work is the low-energy long-wavelength behavior
of the system under consideration, i.e., the behavior at
frequencies below the superconducting gap and at spa-
tial scales exceeding the coherence length. The effec-
tive action for this case can be derived as follows. First,
the partition function is represented in the form of a
Grassmann functional integral over coherent states
[11]:

(6)

Here, the electron degrees of freedom and fluctua-
tions of the electric potential that lead to the Coulomb
interaction are taken into account. Fluctuations of the
vector potential are neglected, assuming that it is fixed
by an external source. The action has the form

(7)

Here, SEM describes f luctuations of the electric field,
i.e., the Coulomb interaction. After the decoupling of
each of the pairing interactions by the Hubbard–Stra-
tonovich transformation, the partition function takes
the form

(8)

Here, Δα = Δα(x, τ), α = ↑, ↓, are complex fields,

(9)

are spinors in the Nambu space, and

(10)

where  are the standard Pauli matrices. The func-
tional integral, where the integrand is a Gaussian
function of the electron degrees of freedom, can be
calculated analytically; the resulting effective action
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for collective degrees of freedom is obtained in the
form

(11)

This action is similar to the action for a conventional
superconductor but this system consists of two subsys-
tems (specified by the subscript α), which interact
with each other only through the scalar potential φ.
Consequently, the behavior of the considered Ising
superconductor can be analyzed in terms of the phys-
ics of the conventional superconductor. If f luctuations
of φ are disregarded, each subsystem has its own tran-
sition temperature  below which the superconduct-
ing order appears with a nonzero average value |Δα|. In
the mean field approximation, the magnitudes of the
order parameters  are determined from the
self-consistency equation

(12)

where ωc is the width of a band near the Fermi surface,
where the pairing interaction acts, whereas the phases
of the order parameters are indefinite. Unlike the con-
ventional superconductor, the relative phase of the
order parameters significantly affects the dominant
pairing type because the singlet and triplet order
parameters are composed from two independent
fields:

In particular, if the relative phase of the order param-
eters is π, singlet pairing is dominant; otherwise, trip-
let pairing is dominant. It is also worth noting that
both the singlet and the triplet components are always
present in a system where the densities of states ν↑ and
ν↓ on the Fermi surfaces are different. As known, f luc-
tuations of the phase of the order parameter in low-
dimensional systems strongly affect the behavior of
these systems and even determine the type of the
superconducting phase transition [9, 12, 13]. For this
reason, the phases Δα will be the main low-energy
degrees of freedom in this system, whereas f luctua-
tions of the magnitude of the order parameter can be
neglected. In this case, small f luctuations of the mag-
nitudes of the order parameters are represented by two
Higgs modes with energies starting from . The
effective action for the phases of the order parameters
can be obtained in the standard way [11, 12, 14]. Only
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the main steps are described below. First, the field Δα
is represented in the form

and the invariance of the trace with respect to unitary
transformations is used. After the transformation

(13)

the dependence on the phases of the order parameters
enters only through gauge-invariant combinations

(14)

which are small in the limit of interest. To expand in
these quantities, it is necessary to introduce the

Green’s function  as a solution of the equation
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and perturbation operators
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correction in  is cancelled with the compensating
contribution from ions , whereas

(20)

The last term in Eq. (17) is nonlocal and includes
various polarization bubbles of the form

(x' – x, τ' – τ). Since slow long-
wavelength f luctuations of the phase are of interest,
bubbles can be calculated in the local approximation
at zero frequency and momentum. This approxima-
tion is valid when the characteristic scale of phase vari-
ation is larger than the coherence length ξc. The stan-
dard calculations [11, 14] give

where

(21)

(22)

The approximate value for  is valid in the same limit
as before when the distances to the bottom of the band

 are the highest energy parameters in the problem.
The sum of all terms gives the expression for the effec-
tive action for the phases of the order parameters:

(23)

Here,  has the meaning of the
superfluid density of the corresponding electron sub-
system. To obtain the resulting action for the phases of
the order parameters, it remains to take into account
the Coulomb interaction and to average over f luctua-
tions of φ.

4. COULOMB INTERACTION
Since the system under consideration is two-

dimensional, whereas the scalar potential acts in
three-dimensional space, its f luctuations directly
depend on the environment of the considered sample.
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neglected and the behavior is determined by electro-
statics,

(24)

where the form of the kernel  depends on the
screening of the considered system. If the screening is
strong, , where C is the capaci-
tance per unit area. In the opposite limit, this kernel
describes the long-range Coulomb interaction and its
Fourier transform is

(25)

The integration over φ(x, τ) gives the effective action
for the phases of the order parameters:
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Since  in the physically interesting cases,
only this limit is considered below. The derived qua-
dratic action describes two coupled collective modes
with the dispersion relations
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The first collective mode is similar to the Goldstone
mode [11], where the phases of the both order param-
eters oscillate together. It has an acoustic dispersion
relation  if the Coulomb interaction is
screened and the square root dispersion relation
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5. CASE OF SLIGHTLY DIFFERENT 
COUPLING CONSTANTS

Both collective modes obtained in the preceding
section are gapless. It means that the phases can freely
and independently rotate at gs = gt, and the established
state can be any superposition of singlet and triplet
pairing. The situation is fundamentally different when
the coupling constants are not equal. The case gs ≠ gt
but |gs – gt| is small so that self-consistency equations
change slightly is considered below. In this case, the
decoupling of the pairing interaction by the Hubbard–
Stratonovich transformation should be performed
separately in each of the channels by introducing the
fields Δs(x, τ) and Δt(x, τ) with the action

(30)

The orthogonal transformation
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part of the action is the same as above and
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gs and can be considered as perturbation. The same
calculations neglecting the contribution of this term to

 yield an additional contribution to the effective
action for the phases of the order parameters in the
form
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slightly affects the Goldstone mode but strongly mod-
ifies the Leggett mode:

(35)

(36)

It is seen that the Leggett mode has a gap and the gap
width directly depends on the difference of the cou-
pling constants. For the described approximation to be
valid, this mode should be low-energy; i.e., 
and, thereby, . The results are dis-
cussed in the next section.

6. DISCUSSION
In this work, the effective low-energy action for the

Ising superconductor has been derived under the
assumption that the singlet and triplet pairing con-
stants are close to each other. The results obtained
allow one to draw the following general picture of the
superconducting state in this system. This state has
two order parameters corresponding to two subsys-
tems. The magnitudes of these order parameters f luc-
tuate slightly, whereas the phases of the order param-
eters f luctuate strongly but are coupled to each other.
Due to the difference between the singlet and triplet
coupling constants, the mode associated with the dif-
ference between the phases of the order parameters in
the system is gapped. This suppresses mutual f luctua-
tions of the phases  and promotes the establishment
of the predominant singlet state (at gs > gt) with a small
addition of the triplet component. The latter compo-
nent appears only because the magnitudes of the order
parameters are slightly different.

Some mechanisms can lead to the aligning of the
phases of order parameters. The calculations is this
work show that the corresponding contributions to the
Hamiltonian of the system should mix electron states
from different subsystems. In particular, scattering on
nonmagnetic impurities inside a single valley does not
change the behavior of the system qualitatively but
only leads to the renormalization of the superfluid
densities . On the contrary, intervalley scattering
(contributions ) can affect f luctuations of
the difference between the phases of the order param-
eters. This problem will be studied in detail in future,
but it can be expected that this mechanism is sup-
pressed because it corresponds to processes of scatter-
ing with a high (quasi)momentum transfer. Magnetic
impurities, which can ensure scattering even inside a
single valley, can also provide a significant effect [16].
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Another mechanism is due to a magnetic field parallel
to the system plane (e.g., along the x axis). The corre-
sponding Zeeman contribution to the Hamiltonian is
given by the expression (the spin magnetic moment is
taken into account in the definition of the field)

As above,  is considered to be small, so this contri-
bution can be taken into account by perturbation the-
ory. The resulting addition to the effective action has
the form

In the long-wavelength limit, this term leads both to
insignificant renormalization of the quadratic part of
the effective action and to the additional contribution
in the form

(37)

where

(38)

Since , the in-plane magnetic field reduces the
term with cosine in the effective action and softens the
Leggett mode. It can even change the sign of this con-
tribution, which leads to the conversion of the domi-
nant type of pairing from singlet to triplet. The authors
of [17] observed an additional peak in the tunnel dif-
ferential conductivity, which was attributed to the
Leggett mode similar to that considered in this work.
The above reasoning can be used to verify this fact. If
the position of the peak changes in the in-plane mag-
netic field, it is most likely that the origin of this peak
is due to mutual oscillations of the phases of the order
parameters. The detailed quantitative analysis of this
problem in the general case, as well as the inclusion of
the effect of soft modes on the single-electron density
of states [13], is a goal for future works.
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