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We consider two one-dimensional quantum XX magnets linked by a periodically driven quantum point con-
tact. If magnets are initially polarized in opposite directions, one expects that a spin current through the
quantum point contact will establish. It has been shown recently [Phys. Rev. B 103, L041405 (2021)] that, in
fact, when the driving frequency exceeds a critical value, the current halts completely, the quantum point con-
tact being effectively insulating. Here we enquire how this picture is affected by quantum dephasing. Our
findings reveal that any nonzero dephasing restores the current.
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1. INTRODUCTION
The subject of transport through a driven quantum

point contact (QPC) has traditionally attracted con-
siderable attention. The prospect of controlling the
macroscopic quantum state of the electron gas via an
external time-dependent potential promises both
practical applications [1, 2] and intriguing theoretical
insights [3–9].

Previous research by one of the authors [10]
revealed a nonequilibrium phase transition [11, 12] in
a closed system consisting of two tight-binding free-
fermionic chains separated by a periodically driven
QPC. Specifically, it was found that when the driving
frequency  exceeds a critical value ωc equal to the
single-particle bandwidth of the chain, the interchain
current drops to zero; i.e., the QPC becomes insulat-
ing.1 Conversely, when the driving frequency is less
than this critical value, ω < ωc, the QPC becomes con-
ducting and a nonzero current between the chains is
established.2

In this work, we examine how a weak interaction
with the environment modifies this picture. Specifi-
cally, we consider the effect of Markovian dephasing
that can be treated by means of the Gorini–Kossa-
kowski–Sudarshan–Lindblad (GKSL) equation. We
find that any finite dephasing suffice to make the QPC
conducting even for ω > ωc, thus eliminating the non-
equilibrium phase transition.

It is known that a tight-binding free-fermionic
chain can be mapped to the one-dimensional spin-1/2
XX model by means of the Jordan–Wigner transfor-
mation [15]. We find it convenient here to work in the
spin language. Instead of two tight-binding chains, we
consider two XX magnets. Initially the magnets are
oppositely polarized. The particle current in the fermi-
onic language is then substituted by the spin current
that tends to level the polarization bias.

The spin (or qubit) language is particularly conve-
nient in the context of quantum simulation and com-
putation. Recent advancements in noisy intermediate-
scale quantum (NISQ) devices [16, 17], such as super-
conducting processors and cold atom arrays, already
allow experimental studies of topics from quantum
many-body physics. It would be interesting to imple-
ment the setup proposed in [10] on one of the existing
NISQ devices. The dynamics of the XX model is
known to be equivalent to the sequence of certain two-
qubit quantum gates known as matchgates [18–20],
further simplifying implementation within the frame-
work of universal quantum computation.

1 In general, one expects that the quantum dynamics should be
suppressed when the driving frequency exceeds the bandwidth.
In fact, one can prove that for locally interacting many-body
systems this suppression is exponential in the frequency [13].
The result of [10] is, however, stronger: it asserts that, for certain
(but not all) QPCs, the cycle-averaged current is exactly zero
(and not merely suppressed) in the nonequilibrium steady state
for an arbitrary frequency above the critical one.

2 A somewhat similar phase transition has been discovered in a
different setting with an alternating bias [14].
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Fig. 1. (Color online) Snapshots of the magnetization pro-
file of the two XX spin chains connected by the QPC and
initialized in the state (7), in the absence (left column) and
presence (right column) of dephasing. The total number of
spins is 2L = 30, the driving frequency is . One can
see that in the absence of dephasing the QPC is insulating,
while in the presence of dephasing the QPC conducts the
spin current.

ω = 2.5
A typical NISQ device is subject to dephasing.
Thus it is natural to enquire what effect the dephasing
will have on the phenomenon found in [10]. This con-
sideration additionally justifies the subject of our
study.

We tackle the problem by solving coupled GKSL
equations in the Heisenberg representation. In the
case of the XX model with dephasing, the space of
operators is known to be fragmented into dynamically
decoupled subspaces of varying dimensionality [21–
24]. This brings a huge simplification and allows us to
numerically treat relatively large systems and, thereby,
to draw a reliable physical picture.

2. GENERAL SETUP
A Markovian dissipative dynamics can be

described by the GKSL equation in the Heisenberg
representation [25],

(1)

with the initial conditions . Here  and  are
Heisenberg and Schrödinger representations of the
observable , respectively;  is the Hamiltonian, and

 is the adjoint dissipation superoperator that reads

(2)

where lj are Lindblad operators,  is a real positive
constant, and  denotes an anticommutator. If the
Heisenberg operator  of an observable is known,
time evolution of its expectation value is given by

, where  is an initial state of the system.
The Hamiltonian of the system under consider-

ation reads (cf. [10]):

(3)

where  and  describe two XX magnets, and 
describes the driven QPC connecting these two mag-
nets. Explicitly,

(4)

(5)

where  are Pauli matrices at the jth site,
L refers to the number of spins in each magnet, and 
is the driving frequency. Note that  is the only term
of the Hamiltonian that depends on time.  vanishes
in the limit of ; in this limit the magnets become
disconnected.
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The Lindblad operators  are given by

(6)

Such Lindblad operators are known to cause dephas-
ing, i.e., the decay of off-diagonal elements of the den-
sity matrix in the  eigenbasis.

Initially magnets are prepared in a pure state
, where

(7)

and ,  are eigenvectors of  such that

, .
The initial condition (7) means that left and right

magnets are completely polarized in the opposite
directions, see Fig. 1. Notably, in the limit of ,
i.e., when the magnets are disconnected, this state is
the eigenstate of the Hamiltonian (3). Moreover, the
corresponding density matrix  is the steady state of
the GKSL Eq. (1). Simply put, in the absence of QPC,
the magnetization profile defined by (7) remains
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unchanged over time, whether the dephasing is pres-
ent or not.

3. SOLVING COUPLED GKSL EQUATIONS
Generally, the numerical solution of the GKSL

Eq. (1) requires an exponential amount of resources.
This is because the dimension of the space of opera-
tors for  qubits grows as . However, for some dis-
sipative systems the space of operators gets fragmented
into dynamically disconnected sectors, with the
dimension of some sectors being polynomial in the
number of qubits [21, 26–32]. The system under con-
sideration is of this type [21–24]. Specifically, the sub-
space containing our observables of interest, z projec-
tions of spin polarizations, , has the dimension that

scales as . Below we explicitly construct this sub-
space.

First we consider the model without dissipation,
. In this case, the system is closed and Eq. (1) is

the Heisenberg equation. We introduce the following
operators known as Onsager strings (cf. [24, 33–35]):

(8)

Here,  is the “size” of an Onsager string, i.e., the
number of Pauli matrices it contains. This size runs
from one (for ) to  (for , ). Note
that index j should be consistent with n: namely,

 are allowed for a given n. This rule
implies that there are  Onsager strings
in total.

It is easy to see that the operator subspace 
spanned by these D Onsager strings is closed with
respect to commutation with the Hamiltonian (3)
[33–35], as demonstrated explicitly in the supplemen-
tary materials. Thus this subspace is decoupled from
the rest of the operator space under the evolution gov-
erned by the Heisenberg equation.

Let us now turn to the case with dissipation, .
It is easy to verify that the subspace  is invariant
under the dissipation superoperator with Lindblad
operators (6) [21–24]. This follows from the equalities
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 and  (see the supplementary
materials for more details).

As a consequence, a system of D coupled GKSL
equations completely determines the dynamics within
the subspace . Since D is only quadratic in the sys-
tem size, these equations can be efficiently solved for
relatively large system sizes . This way we are able to
numerically treat systems consisting of a few dozens of
qubits on a laptop, obtaining the magnetization profile
as a function of time. The results are presented in the
next section.

Let us briefly outline the fermionic picture of our
setting. Under the Jordan–Wigner transformation
[15], the Hamiltonian (3) describes two tight-binding
noninteracting fermionic chains connected by a QPC
with a periodically varying tunneling [10]. A local spin
operator  maps to , where  is the fermionic
number operator on the jth site, the conservation of
the total z-magnetization corresponds to the particle
number conservation, the spin current maps to the
particle current and the initial state (7) corresponds to
the left chain being empty and the right chain being
completely filled by fermions. The Onsager strings (8)
are quadratic in fermionic creation and annihilation
operators and span the subspace of all quadratic oper-
ators.

The latter fact immediately explains the invariance
of the space of Onsager strings under the purely coher-
ent dynamics generated by the Hamiltonian (3)
(which is also quadratic in the fermionic picture).

The reason for the invariance in the presence of
dissipation is subtler. The dissipation superoperator
with Lindblad operators (6) is not quadratic but fourth
order [21, 27, 28]. One could argue, however, that
these Lindblad operators are equivalent to the stochas-
tic local magnetic fields (in the spin picture) or chem-
ical potentials (in the fermionic picture), see, e.g.,
[36]. This brings one back to a quadratic Hamiltonian,
though with stochastic terms. This reasoning is, how-
ever, specific for particular Lindblad operators (6). In
fact, the aforementioned invariance emerges for broad
classes of Lindblad operators that, in general, are not
equivalent to quadratic stochastic Hamiltonians or
quadratic Lindbladians [24]. For example, this is the
case for Lindblad operators , j =1, ..., 2L – 1
that correspond to fourth order terms in the corre-
sponding stochastic Hamiltonian. We have repeated
our calculations for this set of Lindblad operators, see
the supplementary materials. The results are qualita-
tively the same as for Lindblad operators (6).

4. RESULTS
It has been shown in [10] that, in the absence of

dissipation, the QPC turns insulating for driving fre-
quencies exceeding . We start from verifying
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Fig. 2. (Color online) Deviation  of the total magne-
tization of the right chain from the initial magnetization, in
the absence of dephasing. The top plot spans first few
cycles of oscillations, the bottom one, the whole timescale

of Fig. 1. One can see that  remains small and does
not show any tendency to approach L = 15, which means
that the QPC is insulating, consistent with the results of
[10].

Δ ( )R t

Δ ( )R t

Fig. 3. (Color online) Deviation  of the total magne-
tization of the right chain from the initial magnetization for
various values of dephasing . The total number of spins is
2L = 30, the driving frequency is .

Δ ( )R t

γ
ω = 2.5
this fact using our approach. To this end we perform
numerical simulations of the magnetization profile for

 and . The results are shown in the left
panel of Fig. 1. One can see that, apart from a small
initial “leak” of magnetization occurring during the
first few cycles (which is a transient effect also
observed in [10]), the QPC indeed preserves the initial
magnetization imbalance.

To confirm that the system has indeed essentially
approached the nonequilibrium steady state within the
studied timescale, we compute the following quantity:

(9)

This quantity measures the deviation of the total mag-
netization of the right magnet from the initial magne-
tization. If the QPC conducts the spin current, then
the magnetization (or, equivalently, polarization) van-
ishes and  at . In contrast, if the QPC
is insulating,  should not grow with the system
size. Instead, it swiftly approaches some (typically,
small) value that is finite in the limit of . The
latter behavior is a manifestation of the initial leak of
magnetization.3

In Fig. 2 we demonstrate that, in the case of no
dephasing,  remains below 1 and does not show
any tendency to approach . We average  over

3 The nonzero value of this leak highlights the fact that the mag-
netization of either of the two magnets is not a conserved quan-
tity (as it would be in the case of disconnected magnets), and the
initial state (7) is not a steady state. Rather, the leak accompanies
the relaxation of the initial state to the nonequilibrium steady
state.
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time to obtain , with the root mean
square value . We also verify that this
value does not grow with the system size, in particular,

 = 0.151 and  (with
 = 0.150, ). We therefore

conclude that the QPC is indeed insulating.
Then we perform calculations for nonzero dephas-

ing . We find that in this case the QPC is always con-
ductive, as illustrated in the right column of Fig. 1. In
this case, the magnetization imbalance is levelled with
time, the left and right parts of the system eventually
becoming completely depolarized. We note that
dephasing in general tends to facilitate conductance in
variance settings, in particular, in the presence of dis-
order, see, e.g., [37–39].

Figure 3 displays how  increases and eventually
saturates at the value L in the case of nonzero dephas-
ing. The QPC becomes conductive even when dephas-
ing is relatively small.

Interestingly, the current as a function of the
dephasing strength is nonmonotonic. For example,
the growth rate of  for  is smaller than for

, as illustrated in Fig. 3. This behavior is a
manifestation of the dissipative quantum Zeno effect
[40, 41], where high dephasing effectively freezes the
dynamics of the non-equilibrium state. Thus, the ini-
tial state (7) is stable in the opposite limits of 
and .

5. SUMMARY
We have investigated the out-of-equilibrium phys-

ics of a system of two dissipative XX magnets con-
nected by a periodically driven quantum point con-
tact. In the absence of dissipation, the contact was
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known to be non-conductive for frequencies above the
critical one [10]. We demonstrate that this effect does
not tolerate dephasing: the contact invariably becomes
conductive when the dephasing is introduced.
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