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Using a simple theoretical model, AB-stacked bilayer graphene deposited on a ferromagnetic insulating sub-
strate is studied. In addition to the exchange Zeeman field induced by the substrate, the model allows one to
take into account the effective external electric field perpendicular to the graphene sample plane (such field
arises due to the contact with the substrate and can also be induced by applying a gate voltage). It has been
demonstrated that AB-stacked graphene in zero electric field is in a metallic state. As the field increases, a
transition to the insulating phase occurs. The spectrum of electron states, the band gap, and other character-
istics of the phases on both sides of the metal−insulator transition have been calculated. Our results are con-
sistent with density functional theory calculations and can be useful for spintronics.
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1. INTRODUCTION
Graphene and related materials are promising for

applications in spintronics [1–3]. The main object of
study in this work is the Bernal-stacked bilayer
graphene (also referred to as AB-stacked graphene)
[4–6], deposited on a ferromagnetic substrate. Such
heterostructures are of interest because they allow a
strong Zeeman exchange field, thus affecting the spin
characteristics of the electron liquid in a graphene
sample.

In recent years, active experimental and theoretical
studies in this research field are underway. For exam-
ple, the authors of experimental work [7] reported that
insulating EuS magnetic substrates can induce
exchange fields up to hundreds of tesla in a single-layer
graphene sample. (Although dc magnetic fields gener-
ated in laboratories do not exceed several tens of tesla,
the situation with high exchange fields is less problem-
atic.) The authors of [7] observed the splitting of elec-
tron energy bands in the graphene sample, the transi-
tion of the electron liquid to a ferromagnetic state
characterized by the quantum transport of spin-polar-
ized charge carriers, and the spin Hall effect. The
authors of theoretical works [8, 9] considered similar
systems of bilayer graphene placed on insulating mag-
netic substrates made of different materials. In each

case, the electron spectrum is determined by density
functional theory calculations.

Numerical calculations are important for materials
research. However, many properties of carbon systems
can be described using single-electron models that
allow analytical or semi-analytical solutions. In this
work, we employ this approach to study AB-stacked
bilayer graphene deposited on a ferromagnetic insulat-
ing substrate in the external electric field. Our model
Hamiltonian generalizes that previously formulated in
[10]. We explicitly determine single-electron spectra
of AB-stacked graphene and study the magnetic and
transport characteristics of the sample. In particular,
we theoretically demonstrate that bilayer graphene can
be in both insulating and metallic states depending on
the relation between the exchange Zeeman and nor-
mal electric fields. Therefore, by varying the gate volt-
age, it is possible to control spin and charge transport
in bilayer graphene. This possibility may be of interest
for spintronics applications.

Our work is organized as follows. In Section 2, we
formulate the model and study its simplest properties.
The metal−insulator transition is discussed in Sec-
tion 3. In Section 4, we compare the results of our cal-
culations with the numerical data. We discuss our
results and present conclusions in Section 5.
676
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Fig. 1. (Color online) Crystal lattice of AB-stacked bilayer
graphene, top view. The bottom and top layers are shown
in blue and red, respectively. The four sublattices are
denoted as A1, B1, A2, and B2.

Fig. 2. (Color online) Dispersion curve of AB bilayer
graphene (the  cut; qy varies within a narrow range
near the Dirac point  corresponding to ).
The horizontal line indicates the Fermi level .
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2. MODEL
AB-stacked bilayer graphene can be represented as

two graphene sheets that are separated by a distance of
 nm and are displaced with respect to each

other by the carbon−carbon bond length 
0.142 nm, see Fig. 1. In such a lattice, each unit cell
contains four carbon atoms, each of them belongs to
one of four sublattices (A1 and B1 sublattices in the
bottom layer and A2 and B2 sublattices in the top
layer).

To describe an electron having the crystal momen-
tum q at such a lattice, it is necessary to introduce four
components of the wavefunction , , , and

. It is convenient to compose them into the
bispinor

(1)

Then, the Schrödinger equation can be written as
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plays the role of the Hamiltonian for the states with the
crystal momentum q. Here,  eV is the hopping
amplitude between atoms in one layer,  eV is
the interlayer hopping amplitude, and fq = 1 +

2 , where q is the crystal

momentum measured from the Brillouin zone center.
The eigenvalues εq are determined by the well-known
formula

(4)

Near the Dirac points  and  =

, energy bands (4) are plotted in Fig 2. In

zero applied field, AB-stacked graphene is in a semi-
metallic state: two lower bands are completely filled
with electrons, whereas two upper bands are empty,
the Fermi energy equals zero, , and at the Dirac
point, the empty and filled bands touch each other.

To take into account the effect of the magnetic sub-
strate, we assume that the exchange Zeeman field
induced by the substrate affects two layers differently.
Namely, we refine the system of equations (2) as fol-
lows
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Fig. 3. (Color online) Dispersion curves of AB-stacked
graphene deposited on a magnetic substrate (the 
cut;  varies within a narrow range near the Dirac point

 corresponding to ) at h = 11.6 meV (200 T)
and  = (a) 0 and (b) 0.2 meV. The energy is measured
from the Fermi level. The Fermi radius  is indicated. In
panel (a), band touching occurs at the Dirac point. In
panel (b), it is seen that even a small  value gives rise to a
sharp increase in the Fermi radius  and in the Fermi sea
depth.
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In this expression,  and  are the Zeeman exchange
energies in the top and bottom layers, respectively.
Below, we always assume that ; i.e., the
exchange field in the layer being in the direct contact
with the substrate is always higher than that in the
layer not touching the substrate. (We express the
numerical values of exchange fields in both electron-
volts and teslas, the relation between these units is
determined by the Bohr magneton μB ≈ 5.79 ×
10−5 eV/T.)

The eight eigenvalues (four per each spin projec-
tion) of the set of equations (5) can be expressed by the
single formula

(7)

Here,  is the projection of electron spin on the
substrate magnetization vector, , and .
In the physically justified limit, , the energy
of the states with  ( ) is positive (nega-
tive), except maybe a small neighborhood of the Dirac
points.

Let the two bands closest to the Fermi level be
labeled as 4 and 5 and bands 4, 5, 3, and 6 correspond
to the following values of the parameters introduced in
Eq. (7): , , and ; ,

, and ; , , and ;
and , , and , respectively.

The remaining bands 1, 2, 7, and 8 correspond to
. It is easy to check that ;

i.e., these bands are located quite far from the Fermi
level. Consequently, we can ignore them.

Expression (7) implies that

(8)
Hence, we see that the Fermi level in AB-stacked
graphene corresponds to zero energy: 

. It is easy to check that bands 3 and 6 do not
reach , whereas bands 4 and 5 overlap near the Dirac
points, see Fig. 3. Such overlapping leads to the redis-
tribution of charge carriers among the bands, which is
accompanied by the formation of the electron and
hole sheets of the Fermi surface. In other words,
bilayer AB-stacked graphene at a nonzero exchange
field h becomes metallic even without doping.

The Fermi surface formed due to the redistribution
of charge carriers between bands 4 and 5 should be
determined by solving the equation. This condition
defines a doubly connected Fermi surface  in the
crystal momentum space. Symmetry conditions (8)
guarantee that the electron and hole sheets of the
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Fermi surface coincide with each other; i.e., nesting
occurs.

Let  be the area of the region bounded by .
Since this area is rather small, each connectivity com-
ponent is approximated by a circle of a small radius .
The centers of these two circles coincide with the
Dirac points  and . A low Fermi momentum 
allows us to use the approximation .
First, we consider the case of . In this case, we
find

(9)
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However, this formula becomes incorrect even at not-
too-large . Indeed, it is easy to demonstrate that the

expression for the Fermi surface radius at 

takes the form

(10)

Comparing this formula for  with Eq. (9), we find
that even small  significantly affects the Fermi
radius.

The emerging Fermi surface is half-metallic since
among four types of charge carriers (electrons and
holes, each of them has two spin projections), only
charge carriers of two types (electrons with spin

 and holes with spin ) reach the Fermi
level.

The redistribution of charge carriers among the
bands leads to the spin polarization of the graphene
sample. Bands 4 and 5 forming the Fermi surface are
characterized by the opposite values of ; therefore,
the redistribution of charge carriers from one band to
the other is accompanied by the spin f lip for each
transferred charge carrier. The number of transferred
charge carriers (per unit cell) is , where 
and SBZ =  is the Brillouin zone area for
graphene. Each transferred electron contributes two

 quanta to the total spin of the system; hence, the
specific spin polarization in the  approximation
is given by the expression

(11)

In the case of , we have
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where Eq. (10) is used. We see that nonzero  leads to
a drastic increase in the magnetization.

Let us further generalize our model taking into
account the nonequivalence of the layers due to both
contact with the substrate and the applied dc electric
field. We assume that the substrate creates a finite dif-
ference  in potential energies of the layers. In addi-
tion, we assume that the gate electrodes can generate
the electric field E perpendicular to the sample plane.
To include these effects into our formalism, we modify
the matrix  in Eq. (5) to the form
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where

(14)

Here,  is the effective field incorpo-
rating the combined effect of both the substrate and
the electric field  on electrons in our system. The
suggested model extends the approach employed
in [10].

The band structure at finite , , and  values is
described by the formula

(15)

This expression generalizing Eq. (7) is used below
to study the effect of the applied field on the system
properties.

3. METAL−INSULATOR TRANSITION

It is well known that the electric field perpendicular
to the AB-stacked graphene sample induces its transi-
tion to the insulating state. On the other hand, we
show that bilayer AB-stacked graphene deposited on
the ferromagnetic substrate is a metal in the 
limit. Consequently, it is interesting to determine the
minimum value of  sufficient to open a gap in the
spectrum of the system under study. A relatively sim-
ple analysis demonstrates that the system is metallic if
bands 4 and 5 given by the expression
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overlap with each other. Otherwise, bilayer graphene is
an insulator. Thus, the metal−insulator transition
occurs when the top of band 4
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Fig. 4. (Color online) Dispersion curves near the Dirac
point  of AB-stacked graphene deposited on a magnetic
substrate in the applied electric field (the  cut; qy

varies within a narrow range near the Dirac point  cor-
responding to ) at  and h = 11.2 meV
(  T), so that φc = 11.22 meV. (a) Insulating phase,  =
20 meV. The spectrum clearly exhibits the band gap sepa-
rating valence bands 3 and 4 from the conduction band. (b)
Metallic phase,  meV. Bands 4 and 5 are presented by
the red and blue lines, respectively. Bands 3 and 6 are out-
side of the energy window in panel (b). The Fermi level is
denoted by the horizontal straight line. The crossing points
of the bands with the Fermi level correspond to the Fermi
surface. The Fermi momenta are denoted as , ,
and .
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Fig. 5. (Color online) Band gap  at different
exchanges field  and at . In the metallic phase (φ <
φc), the gap vanishes. The plots demonstrate that the crit-
ical value φc increases with ; this agrees with Eq. (19).
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Equating  to , it is easy to demonstrate that the
system under study is an insulator (semiconductor) if
φ > φc; at , the critical value φc is given by the
formula

(19)

The analysis of (19) shows that the cubic corrections to
φc at typical values of exchange fields as high as hun-
dreds of tesla make a negligibly small contribution.
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Expressions (17) and (18) allow us to find the band
gap ,

(20)

see Fig. 4a. In the limit of very strong fields, ,
Eq. (20) gives . This asymptotic limit is
clearly seen in Fig. 5, where we plot the function

 at  and different Zeeman fields h.
However, it would be quite difficult to create so wide
band gaps in an actual experiment due to the possible
electric breakdown of this heterostructure.

Note also that the spin polarization of the insulat-
ing phase is always absent, . Indeed, in the
absence of the Fermi surface, the redistribution of
charge carriers between the bands corresponding to
opposite values of  does not occur, and the number
of electrons with the spin projection parallel to that of
the field  is exactly equal to the number of electrons
having the opposite spin projection.

Now, let us discuss the range φ < φc, where our sys-
tem is metallic. A typical metallic spectrum is illus-
trated in Fig. 4b. In Section 2, we discussed the char-
acteristics of the metallic state at zero effective field
E*. At nonzero h and φ values, the symmetry of
Eqs. (8) is no longer valid; therefore, we cannon fix
the Fermi level at . It is necessary to consider
the multicomponent Fermi surface determined by the
standard condition . For band 4 at a
positive φ value, these equations specify two concen-
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Fig. 6. (Color online) (Green line) Band gap  and
the spin splitting of the (blue line) conduction and (red
line) valence bands at ,  meV, 
‒0.38 V/nm, and  versus the external electric field
Eext. Note that a nonzero  value shifts the metallic phase
to the . The presented plots agree with Fig.
4b in [9].
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tric circles centered at the point . We denote the
radii of these circles as  and , . The
same situation takes place near the  point. Band 5
contributes one more circle per each Dirac point. We
denote their radius as . Note that at φ = 0, radii 
and  coincide with each other and with  deter-
mined by Eq. (9), whereas radius  vanishes. The
arising Fermi surface should satisfy the condition

(21)

In other words, the number of states occupied by elec-
trons in band 4 is equal to the number of empty states
in band 5. At  and , the problem can
be explicitly solved:

(22)

At , the derived relation shows that  = 0 as is
the case in zero effective field, see Section 2. Note also
that the second term includes the ratio that is small in
the typical physical situation: . For example,
at h = 200 T, the second term is three orders of magni-
tude smaller than the first one.

4. COMPARISON WITH THE COMPUTER 
SIMULATION RESULTS

To illustrate the usefulness of our approach, we
compare our analytical calculations with the density
functional theory [9]. Following [9], we define the
“splittings” of the valence and conduction bands as
follows
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These two parameters characterize the “fine” struc-
ture of the spectrum and are easily calculated in our
model.

The splittings λVB and λCB are interesting because
Fig. 4b in [9] demonstrates how these parameters (and

) depend on the external electric field  created by
the gates. To plot λVB, λCB, and  as functions of Eext,
we should take into account that field Eext generated by
an external source (gates) is attenuated within the
interlayer space of AB-stacked graphene due to the
electron density redistribution between the layers. To
this end, we introduce the permittivity  of AB-
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stacked bilayer graphene and specify the following
relation between  and Eext:

(25)

which corresponds to the substitution  in
Eq. (14). The data presented in the top panel of Fig. 4
in [11] suggest that  ~ 3.4. Similar theoretical esti-
mates can also be found in [12].

To determine the optimum values of parameters in
our model, we analyzed Figs. 3 and 4 in [9]. In Fig. 3,
one can notice that deep in the insulating phase,
whose wavefunctions are predominantly localized in
the upper layer, are nearly degenerate. This feature
becomes possible at a very weak exchange field  in
the upper layer. Therefore, we chose . This
allows us to reproduce an approximate degeneracy of
the corresponding bands in the insulating phase, see
Fig. 4a.

Figure 4b in [9] demonstrates that the splittings λVB

and λCB in the insulating phase are saturated at about
8 meV. Analyzing Eq. (24) and (23), we can easily find
that this behavior corresponds to h = 4 meV at .
The choice of  meV provides the cor-
rect location of the metallic phase on the Eext axis.
Finally, we chose  to match the slopes of the

 function in our formalism and in Fig. 4b
in [9].

The corresponding plots are presented in Fig. 6.
Our curves are in good agreement with Fig. 4b in [9] in
both characteristic scales and qualitative behavior. In
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other words, the choice of only four fitting parameters
with a transparent physical meaning makes it possible
to reproduce the dependences obtained as a result of
the time-consuming numerical calculations.

5. DISCUSSION AND CONCLUSIONS
The most interesting feature of the heterostructure

under study is the possibility to control its conductive
properties by the gate voltage. The opening of a band
gap in the perpendicular electric field applied to the
AB-stacked graphene sample is a well-known theoret-
ical result obtained in [13, 14] and confirmed experi-
mentally in [11, 15–17]. We have generalized it to the
case of a magnetic substrate. We have demonstrated
that the magnetism of the substrate unexpectedly
modifies the band structure of AB-stacked graphene.
Indeed, instead of Fermi points with the parabolic dis-
persion relation near the touching of bands, which are
destroyed at an arbitrarily small layer asymmetry , a
nonzero h value induces a spin-polarized metal at
small  and an insulator at larger . Our simple model
allows us to calculate the position of the metal−insu-
lator transition and to study the properties of the
phases on both sides of the transition.

Our calculations have demonstrated that the
AB-bilayer graphene sample exhibits a nonzero mag-
netization  in the conducting phase. With an
increase in , the system transforms to the insulating
state with zero ; i.e., the magnetic characteristics of
the heterostructure can be controlled by a nonmag-
netic influence.

At zero , the electron and hole sheets of the Fermi
surface of the system under study coincide with each
other; i.e., nesting occurs. This feature of the band
structure implies that the electron liquid at sufficiently
low temperatures will be unstable with respect to the
spontaneous nonsuperconducting ordering [18].
Deviation from  destroys nesting; therefore,
ordering can be controlled by varying the gate voltage.

In addition, the conducting phase exhibits half-
metallic characteristics: spins of the states on the elec-
tron (hole) Fermi surface sheet are perfectly polarized
antiparallel (parallel) to the field . This feature of the
band structure could be used in the spin transport
experiments.

In the insulating phase, the band gap can be rather
wide: according to our estimate, ; i.e., it
could be as high as several hundreds of meV. However,
significant gap widths can require strong applied elec-
tric fields, and this increases the risk of the electric
breakdown in the system as a whole.

In addition, in the wide gap limit, when
, magnetic phenomena can be less pro-

nounced against the background of pure electrostatic
ones. The  regime seems more interesting since
it is close to the metal−insulator transition. In this sit-

φ

φ φ

m
φ

m

φ

φ = 0

h

Δ − − �

0t h h∼

φ 0h t� �

φ h∼
uation, to easily observe and/or utilize the discussed
physical phenomena, substrates that can induce high
fields  comparable to the energy corresponding to
room temperature Tr = 300 K = 26 meV or even
exceeding it are necessary. Otherwise, the usage of
cryogenic technologies becomes inevitable.

To summarize, we have analytically studied
AB-stacked bilayer graphene deposited on the insulat-
ing ferromagnetic substrate. The Hamiltonian of the
model under study includes the exchange Zeeman
and electrostatic fields, and also takes into account
the asymmetry of the layers caused by contact with
the substrate. In a low effective field, AB-stacked
graphene is a metal, for which we have found a Fermi
surface, which is half-metallic and can exhibit nesting.
The sample itself has a nonzero spin polarization.
When the critical electric field is exceeded, a gap
opens in the spectrum of graphene. In the resulting
insulating state, the total spin polarization vanishes.
Our calculations are consistent with the density func-
tional theory computer simulations. The possibility to
control the gap together with nontrivial magnetic
properties makes the heterostructure under discussion
promising for spintronics applications.
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