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The problem of the transition of electron shells of atoms to excited states in the process of neutrinoless dou-
ble-  decay is investigated. This subject is crucial for modeling the energy spectrum of -electrons, which is
sensitive to the mass and Majorana nature of neutrinos. The dependence of the obtained results on the atomic
number indicates an important role of the Feinberg–Migdal effect in the electron shell excitations. We report
the overlap amplitudes of the electron shells of the parent atom and the daughter ion for eleven atoms, the
two-neutrino double-  decay of which was observed experimentally. In around one-fourth of the cases where
the structure of the electron shells is inherited from the parent atom, there is a transition to the ground state
or the excited state with the lowest energy. The de-excitation of the daughter ion in the latter scenario is
accompanied by the emission of photons in the ultraviolet range, which can serve as an auxiliary signature of
double-  decay. The average excitation energy of the electron shells ranges between 300 and 800 eV, with the
variance ranging from (1.7 keV)2 in calcium to (14 keV)2 in uranium.
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Neutrinoless double-  decays (0 2 ) do not pre-
serve the total lepton number and are of particular
interest in the search for deviations from the Standard
Model (SM). Similar significance could be found in
the quark sector of SM for processes which violate
baryon number conservation, such as proton decay
and neutron–antineutron oscillations [1]. Beyond the
SM, any mechanism of 0 2  decay implies the exis-
tence of a Majorana neutrino mass [2, 3]. In the effec-
tive theory, the Majorana neutrino mass, , is gener-
ated by the Weinberg operator of dimension  [4].
In the absence of operators of dimension  and
symmetry between left and right elementary fermions,
the amplitude of 0 2  decay with light Majorana neu-
trino is proportional to .

Experimental searches for 0 2  decay have been
actively preformed for a number of decades. The
GERDA collaboration recently obtained a constraint

 eV at the confidence level CL =
90% using the isotope 76Ge [5]. Similar results were
obtained by the EXO collaboration [6] using xenon-
136. Restriction on the effective neutrino Majorana
mass  eV was also obtained by the col-
laboration NEMO-3 using molybdenum-100 [7]. The
SuperNEMO experiment is under preparation [8].

The experiments CUORE using the isotope 130Te [9,
10] and KamLAND-Zen with liquid xenon-136 [11]
are in the active phase.

The uncertainty of the upper limit on the neutrino
mass is due to the accuracy of calculations of the
nuclear part of the process [12–14].

Experiments to search for 0 2  decay analyse the
energy spectrum at the boundary of the phase space of

-electrons in order to find a deviation from the
energy spectrum of a more probable two-neutrino
double-  decay (2 2 ). Experimentalists inevitably
encounter a problem that has become widely known in
connection with attempts to measure neutrino mass in
tritium beta decay: the daughter atom with a high
probability passes into an excited state. This may be
the excited state of a molecule composed of active tar-
get atoms. The atoms themselves experience excitation
due to shake-up and shake-off effects or internal scat-
tering of -electrons. The theory of these processes is
developed by Feinberg [15] and Migdal [16]. Influ-
ence of these processes on the spectrum of -electrons
is especially noticeable near the spectrum boundary.
The effect increases significantly due to the fact that
the spread of residual excitation energies is almost an
order of magnitude higher than the average value [17].

β β

β

β

β ν β

ν β

νm
= 5d
> 5d

ν β
νm

ν β

ν −| | < 0.079 0.18m

ν −| | < 0.3 0.9m

ν β

β

β ν β

β

β

470



ATOMIC ELECTRON SHELL EXCITATIONS 471
A similar effect can be expected from the chemical
shift [18].

The implications of atom ionization and excitation,
first studied in the context of nuclear physics, are
observed in molecular, solid-state systems and are
crucial to the experiments LUX [19], XENON1T [20],
and DarkSide-50 [21], which are designed to detect
dark matter particles.

In double-  decays, the daughter ion with a high
probability occurs in an excited state [22–25] which
reduces the energy carried away by -electrons. The
energy spectrum of -electrons in 0 2  decay is a
delta function, distorted by atomic effects. This peak is
considered as the 0 2  decay’s signature. The decay
realizes a scenario in which channels with valence
electron excitations prevail in probability, although
the average excitation energy, , and its variance, ,
are essentially saturated by rare electron excitations
from inner atomic orbitals.

In this paper, we estimate the deviations of the
-electrons energy from the decay energy, Q*, of the

0 2  decay for 11 atoms for which 2 2  decay was
experimentally observed.

The binding energy of electrons on the K shell dif-
fers from the binding energy of valence electrons by
around three orders of magnitude ( ) in medium-
heavy and heavy atoms, making it difficult to estimate
the magnitudes of  and  qualitatively. Excitation of
valence electrons with low binding energy obviously
dominates the decay probability. However, the calcu-
lations result in unusually large values of average exci-
tation energy and its variance. Given that the accuracy
of calculations in multi-particle problems is also lim-
ited, the paper considers several approaches, includ-
ing the Thomas–Fermi (TF) model [26], the
Thomas–Fermi–Dirac–Weizsacker model (TFDW)
[27–31], non-relativistic Roothaan–Hartree–Fock
(RHF) formalism [32] and relativistic Dirac–Har-
tree–Fock formalism (DHF) [33–37]. When the out-
comes are compared, the magnitude of uncertainty in
the parameters of interest can be evaluated.

Each of these approaches has its advantages and
limitations. Unlike the TF model, the electron density
in the TFDW model is finite at the nucleus, which
makes it possible to determine the variance within the
model. In the RHF method, the wave functions of
orbitals are parametrized analytically, which makes it
possible to find exchange contributions to the variance
and other observables, but the applicability of the
method is restricted to light and medium-heavy
atoms. Within the framework of DHF, the basic prop-
erties of atomic electron shells are tabulated in [33–
35] and implemented in the form of software packages
such as Grasp-2018 [36, 37] and RAINE [38, 39].

In what follows, the system of atomic units
, c = 137 is used, where  is the electron

mass,  is the proton charge,  is the speed of light. Let
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 be the Hamiltonian of  electrons of an ion
with a nucleus charge Z. We denote  the ground
state and  the binding energy of the electrons, so
that .

The Hamiltonian of the daughter ion’s electrons is
related to the Hamiltonian of the parent neutral
atom’s electrons via the relation

(1)

where ,  is the coordinate of the ith electron,
and summation is performed by . The elec-
trons of the daughter ion are in the state  for the
next moment after the decay, while the nucleus
acquires a charge of . The relationship

(2)

determines the average excitation energy of the daugh-
ter ion’s electrons, or, with account of Eq. (1),

(3)

where  is the Coulomb interaction energy of the
electrons with the nucleus.

Table 1 shows the results of the calculation of the
excitation energy in the TF, TFDW and DHF models.
First, the values  are found, which differ from  by
replacing in Eq. (3) the binding energy of the electrons
of the ion  with the binding energy of the elec-
trons of the neutral atom . The difference
between  and  is equal to the double
ionization energy, ; there is a relation .
The experimental values of  are collected in [40].

In the TF model, the calculations are carried out
according to the scheme of [17]. The TFWD model,
being a generalization of the TF model, additionally
takes into account exchange contribution to the energy
of electron gas [27] and spatial inhomogeneity in the
electron density [28]. A consistent semiclassical
decomposition of the density functional with account
of the inhomogeneity can be found in the monograph
by Kirzhnits [29]. In its simplest form

(4)

Here,  is the electron density, the first term under
the integral sign represents the interaction energy of
the electrons with the nuclus, , the second term is
the kinetic energy, the third one is the exchange
energy, the fourth one is the Weizsacker gradient cor-
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Table 1. Average excitation energy of the electron shells of the daughter ion and the variance for eleven atoms, the 
decay of which was observed experimentally. The second column contains the values of the mass difference, Q, of the neu-
tral atoms involved in the decay. The fourth column shows the overlap integrals of the electron shells of the parent atom and
the twice ionized daughter atom, calculated with the use of the software package Grasp-2018 [36, 37]. The average energy
of the electron shell excitations of the daughter ion is shown in the TF, TFDW and DHF models, the upper bound of the
variance  is shown in the TF, TFDW models, and the variance  in the DHF and RHF models. The values of  and

 excluding exchange contributions are obtained using the results of [35] and [34], respectively.  includes
exchange contributions. To calculate  without and  with exchange contributions, the wave functions of orbit-
als in the RHF method are used [32]. The double ionization energy  [40] is rounded to three significant digits. The pre-
dictions of the non-relativistic models TF, TFDW, and RHF are limited by the nuclear charge numbers 

Process Q (keV) Ref.  
(eV)  (eV) (eV)

I2 
(eV)

 
(keV) (keV) (keV) (keV) (keV)

 
(keV)

4267.98(32) [42] 0.466 335 247 299 20.4 1.25 2.43 1.70 1.65 1.66 1.61

2039.006(50) [43] 0.575 383 246 369 30.9 2.16 3.92 2.88 2.77 2.72 2.62

2039.061(7) [5]

2997.9(3) [44] 0.597 384 238 377 38.4 2.31 4.17 3.09 2.97 2.90 2.79

3356.097(86) [45] 0.518 422 246 409 23.3 2.78 4.92 3.76 3.60 3.44 3.29

3034.40(17) [46] 0.564 428 241 419 24.1 2.94 5.17 4.00 3.82 3.62 3.46

2813.50(13) [47] 0.601 451 229 442 22.0 3.42 5.92 4.74 4.51 4.17 3.97

865.87(131) [48] 0.589 452 206 457 33.1 3.74 6.42 5.29 5.04 4.53 4.32

2526.97(23) [47] 0.589 452 206 457 33.1 3.74 6.42 5.29 5.04 4.53 4.32

2457.83(37) [49] 0.606 476 217 465 15.2 3.91 6.67 5.57 5.31 4.71 4.49

3371.38(20) [50] 0.519 514 16.7 6.50 6.20

1437.3 [51] 0.546 774 17.5 14.58 13.90
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rection [28]. The last term is the interaction energy of
electrons. The coefficients ci equal

(5)

The value  of the phenomenological models
[30, 31] is used.

In [30], the binding energy of neutral atoms N, Ne,
Ar, Kr, Xe with filled valence shells is calculated using
the TFDW model. Parameterization of the results
gives , which is not much different

from the TF model, where . The
energy of the Coulomb interaction of electrons with
the nucleus is calculated using the screening function.
Integrating the expression for  by parts, the action
of the Laplacian is transferred to the Coulomb poten-
tial, which gives a delta function at the origin. The dif-
ference between the total potential and the nuclear
potential occurs as a multiplier. The interaction energy
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turns out to be , the screening function
parameters a and b are given in Table 2 of [30]. The fit-
ting gives  in agreement with the
virial theorem. The parameterization accuracy is not
worse than 0.5%. The corresponding results for  are
shown in Table 1.

The average values of  required to
estimate  in the DHF method are tabulated in

[32–35]. In [35], the values of  are also provided.
The results of calculations of  within the framework
of DHF model [35] are shown in Table 1.

The TF and DHF models agree well with each
other and agree qualitatively with the predictions of
the TFDW model.

The variance of the electron excitation energy is
determined by the formula

(6)
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Table 2. Matrix elements  and  for  electron orbitals in a molybdenum atom. Calculations
use electron wave functions of the RHF method [32] with degeneracy in . In the lower part of table, diagonal matrix ele-
ments  of the relativistic DHF method [34] are given; the upper and lower rows of P and D waves correspond to

 and , respectively

42Mo

1S 2S 3S 4S 5S 2P 3P 4P 3D 4D

1S 41.49 7.962 3.231 –1.255 0.321
2S 9.378 2.160 –0.803 0.204 2P 9.339 –1.858 –0.626
3S 3.264 –0.665 0.163 3P 3.164 0.582 3D 2.970 –0.361
4S 1.171 –0.149 4P 1.052 4D 0.714
5S 0.327

 [34] 43.55 9.939 3.409 1.209 0.322 9.412 3.190 1.059 2.958 0.695
9.879 3.300 1.089 2.987 0.705

1S 2S 3S 4S 5S 2P 3P 4P 3D 4D

1S 3455. 984.9 410.3 –160.1 40.94
2S 357.8 141.7 –55.02 14.06 2P 118.4 –37.69 –13.17
3S 65.20 –24.42 6.223 3P 21.34 6.697 3D 11.17 –2.120
4S 10.41 –2.564 4P 3.157 4D 0.965
5S 0.748

[34] 4005. 439.4 80.03 12.73 0.830 120.7 21.93 3.243 11.11 0.930
141.5 25.50 3.744 11.37 0.960
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Taking into account Eq. (1) we have

(7)

The summation is performed in the range .
In the TF and TFDW models, the two-particle elec-
tron density is not defined, however, it is possible to fix
the upper limit of the variance [17]:

(8)

Calculation of the integral of  over the electron
density distribution in the TFDW model leads to val-
ues that can be parameterized as

(9)

The parameterization accuracy is not worse than 5%.
The values of  in the TF and TFDW models are
shown in Table 1.

In the DHF method, it is possible to estimate not
only the upper bound of the variance, but also the vari-
ance itself. In disregard of exchange effects  is calcu-
lated from Eq. (7) after factorization of the average
value under the double summation sign. The corre-
sponding results, using the tabulated values of averages

 and  for the electron orbitals [34], are shown in
Table 1.
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The exchange effects are taken into account by
averaging the two-particle operator over the total wave
function of electrons of the atom. In the one-determi-
nant approximation, the wave function has the form

(10)

where  are the wave functions of electrons, the index
 counts the spatial coordinates and spin

indices, the index  counts the quantum numbers of
orbitals. In the case under consideration, ,
where  is the principal quantum number, j is the total
angular momentum,  is its projection,  is
the orbital angular momentum. A fixed set of quantum
numbers  determines the state of the
electron shells of the atom. The tensor 
performs antisymmetrization.

The functions  are orthonormal. We write them
as the product of the radial and angular parts:

(11)

Here,  is a real function,  is a spherical
spinor depending on the unit vector . We
denote by  the number of occupied energy levels
with quantum numbers . In the case of fully occu-
pied energy levels, as well as cases allowing for each
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pair of  the existence of no more than one partially
occupied energy level with the maximum total angular
momentum, , one can sim-
plify Eq. (7) by replacing the summation over elec-
trons by the summation over energy levels:

(12)

The matrix elements are defined according to

(13)

The sum of the diagonal components  of
Eq. (12) coincides with the right side of Eq. (7)
through factorization of the mean value under the sign
of the double sum, as it is assumed in the TF and
TFDW estimates. The components with  in the
second term of Eq. (12) are related to exchange effects.
The exchange effects reduce the variance.

In the RHF method, the functions  are tabu-
lated [32]. To calculate the variance taking into
account exchange effects, knowledge of the off-diago-
nal matrix elements  and  is
required. Table 2 shows the results for molybdenum
atom in the RHF method. The diagonal matrix ele-
ments are compared with those in the DHF method
[34]. There is some systematic underestimation of the
average values in comparison with the DHF method,
which is due to the shift in relativistic models of the
electron density to smaller distances [37]. A similar
pattern holds for other 10 atoms. Accordingly, the
variance in the RHF method without taking into
account exchange contributions is also systematically
lower than the predictions of the DHF method.

The average values of 1/r and  in inner and
outer orbitals are approximately in the ratios  and

, which is consistent with the values of the diag-
onal matrix elements in Table 2. In cases where for a
partially occupied level the total angular momentum is
not the maximum and/or where there exist more than
one partially occupied level for a pair of , the for-
mula (12) is used as an approximation. Since in
medium-heavy and heavy atoms, the main contribu-
tion to the variance comes from electrons in inner
shells, where , one can expect that accu-
racy of such an estimate is quite high.

The results of calculations of  in the RHF
method, taking into account exchange contributions,
are presented in Table 1. For comparison, the results
of calculations without exchange effect are also pro-
vided. The agreement with the TF, TFDW, RHF and
DHF models is quite satisfactory.
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For applications, we recommend the values of exci-
tation energy , for variance , as theoreti-
cally the most justified. The estimate of  differs
from  in that it includes exchange corrections
found by the RHF method. Taking into account vari-
ous approximations, the uncertainty in  and

 can be estimated at .
In the non-relativistic TF, TFDW and RHF mod-

els  only weakly depends on , while  grows
approximately as . This behavior is perfectly consis-
tent with the highlighted role of K electrons, whose
nonrelativistic excitation theory in  decay is devel-
oped in [15, 16].

The parameter  given in Table 1 represents the
overlap amplitude of the wave functions of all the elec-
trons in the ground state of the parent atom with the
wave functions of the electrons in the ground state of
the twice ionized daughter atom, whose electrons have
retained their initial configuration. The corresponding
wave functions of the electrons are not orthogonal
because the charges of the nuclei before and after
shaking differ by two units, and as a result, the overlap
of electron wave functions with the identical quantum
numbers is not equal to one. The daughter ion gets
excited as a result. The value  determines the prob-
ability of inheriting quantum numbers by the electrons
and, accordingly, the absence of shaking effects.

To estimate , a multiparticle calculation using
the DHF method is required, which was performed
using the software package Grasp-2018 [36, 37]. A set
of large  and small  radial components of
electron wave functions for all quantum numbers 
is obtained for each parent atom of Table 1 with an
appropriate electron configuration and a total angular
momentum corresponding to the ground state of the
parent atom’s electrons. Similarly, for a daughter ion
with a nuclear charge , a set of radial compo-
nents  is obtained. The overlap amplitude  of
the wave functions of electrons with the same quan-
tum numbers is equal to

In the one-determinant approximation and without
taking into account exchange terms, the amplitude of

 is equal to the product of the amplitudes of  in
the degree equal to the occupation number of the cor-
responding level:

(14)

For a wide range of atomic numbers , the values
of  turn out to be close to 1/2. The probability of

 is quite small, which indicates the domi-
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nance of channels with the excited electron shells of
atoms in agreement with the phenomenological anal-
ysis [22]. The above approach assumes that the result-
ing configuration of the daughter ion is the ground
state with quantum numbers of electrons inherited
from the parent atom. However spectroscopic analysis
shows that this condition is not always met. For exam-
ple, the Ti III ion formed after  decay of Ca with
the electron configuration [Ar] , in the ground state
has the configuration [Ar] . Strictly speaking, this
fact means that the overlap is exactly zero: ,
therefore, the decay with the dominant probability is
accompanied by the excitation of the electron shells of
the atom. The energy of the [Ar]4  lowest configura-
tion exceeds that of the [Ar]3  configuration of Ti III
by 12.7 eV. A similar situation occurs in double-
decay of Zr, Mo, Nd, and U atoms. In these cases, the
amplitude , given in Table 1, is the amplitude of the
transition to the most likely excited state of the elec-
tron shells of the daughter ion. In approximately every
fourth case, double-  decay of Ca, Zr, Mo, Nd, and U
is accompanied by the de-excitation of the electron
shells of atoms from the unique excited state to the
ground state with the emission of a series of photons of
the ultraviolet range. The observation of these pho-
tons, whose wavelengths are well known, can serve as
an auxiliary signature for the identification of decay.

Knowledge of the parameters ,  and  is suf-
ficient to construct simple models of the energy distri-
bution of -electrons in  decay. With a probability
of , the electrons of the decaying atom remain in
the lowest energy state, preserving their quantum
numbers, with a probability of  they pass into an
excited state. The conditional probability of transition
to an excited state with energy  in the interval  is
denoted by . The total probability den-
sity takes the form

(15)

The binomial distribution is used for , which has
a certain universatility and is widely used in modeling
random processes [41]. The distribution has two free
parameters, which are fixed by normalization to the

average value of  and the mean square

of the energy .

Based on the DHF model predictions, we calculate
the maximum deviation, , of the -electrons
energy from the decay energy Q*.  can be deter-
mined through the equation
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for a given probability, . The value of  cor-
responds to the deviations of the -electrons energy
from Q* less than  eV (Ca), 18 eV (Ge),
19 eV (Se), and  eV for Zr, Mo, Cd, Te, Xe,
Nd, U. At the probability of , the deviations
do not exceed  keV (Ca), 0.55 keV (Ge),
0.44 keV (Se), 0.25 keV (Zr), 0.18 keV (Mo), 69 eV
(Cd), 22 eV (128Te), 30 eV (130Te), 19 eV (Xe), 11 eV
(Nd), and  eV for U.

The decay energy without the energy taken away by
neutrinos is measured in calorimetric detectors, where
the energy resolution reaches a few keVs (GERDA).
Using a track calorimeter, the SuperNEMO experi-
ment measures the energy of -electrons in -sele-
nium decay with an uncertainty of 4% at an energy of

. Innovative technologies with excellent energy reso-
lution are in high demand for reducing background
noise and for tracking the impact of atomic shell exci-
tations on the neutrino mass constraints.

To summarize, the overlap amplitudes for the elec-
tron shells of the parent atom and the daughter ion for
each atom whose  decay was observed experi-
mentally were found. In the double-  decay of atoms
82Se, 96Zr, 100Mo, 150Nd, and 238U, the electron shells
with probability  turn out to be the lowest excited
state with quantum numbers inherited from the parent
atom. Such decays are accompanied by a subsequent
de-excitation with characteristic emission of photons
of the ultraviolet range. In the atoms 48Ca, 76Ge, 116Cd,
128Te, 130Te, and 136Xe, the daughter ion’s electrons
move to the ground state with a probability of ~1/4
and to an excited state with a probability of ~3/4. The
average value and variance of the excitation energy
were computed for each of the scenarios under consid-
eration. The dependence on the atomic number indi-
cates the dominant contribution to the variance of the
Feinberg–Migdal effect. Deviations of the -electrons
energy from the decay energy Q* were estimated for
the neutrinoless mode of double-  decay.
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