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The activation temperature T in the de Sitter environment is twice the Gibbons–Hawking temperature,
related to the cosmological horizon. We consider the activation temperature as the local temperature of the
de Sitter vacuum, and construct the local thermodynamics of the de Sitter state. This thermodynamics
includes also the gravitational coupling K and the scalar Riemann curvature  as the thermodynamically
conjugate variables. These variables modify the thermodynamics of the Gibbs–Duhem relation in the de Sit-
ter state. The free energy density is proportional to , which is similar to that in the nonrelativistic Fermi
liquids and in relativistic matter with equation of state . The local entropy is proportional to the local
temperature, while the total entropy inside the cosmological horizon is , where A is the area of the hori-
zon. This entropy is usually interpreted as the entropy of the cosmological horizon. We also consider the pos-
sible application of the de Sitter thermodynamics to the Schwarzschild–de Sitter black hole and to black and
white holes with the de Sitter cores.
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1. INTRODUCTION
The vacuum of the de Sitter spacetime is character-

ized by the local temperature , where H is the
Hubble parameter, see [1] and references therein. This
temperature describes the thermal processes of decay
of the composite particles and the other activation
processes, which are energetically forbidden in the
Minkowski spacetime, but are allowed in the de Sitter
background, see also [2–4]. In particular, this tem-
perature determines the probability of the ionization
of an atom in the de Sitter environment, ,
where E is the ionization potential. This activation
temperature is twice the Gibbons–Hawking [5] tem-
perature  of the cosmological horizon,

. As distinct from the , the activation
temperature has no relation to the cosmological hori-
zon. It describes the local processes, which take place
far away from the horizon.

However, it is not excluded that the processes
related to event horizon may also contain the factor 2
due to entanglement between the observed particle
and its partner hidden behind the horizon [6–9]. The
similar entanglement may produce the factor 2 for the
processes related to the de Sitter cosmological horizon
[10]. This factor also appears in condensed matter
analogs, where both the created (quasi)particle and its
partner behind the acoustic horizon are observed by
external observer.

If  is the local temperature in de Sitter
spacetime, the natural question is: does it determine
the local thermodynamics of the de Sitter vacuum? In
this paper we discuss this thermodynamics, including
the Gibbs–Duhem relation of the de Sitter state, its
free energy, effective pressure and local entropy. This
can be extended to quasi-equilibrium states: vacuum +
matter. Such states can be characterized by two tem-
peratures: the temperature of the vacuum component
and the temperature of the matter degrees of freedom.
The main difference between thermodynamics of the
two components of the system is that the vacuum
component contains extra thermodynamic variables
describing the gravitational degrees of freedom. These
are the gravitational coupling  (here we
use units ) and the scalar Riemann curvature

, which are the thermodynamically conjugate vari-
ables. These variables enter the modified Gibbs–
Duhem relation.

In Section 3 we apply the de Sitter thermodynam-
ics to the gravastar, i.e., the black hole with the de Sit-
ter core, where the thermodynamics of black hole is
modified by the thermodynamics of the de Sitter vac-
uum in its core. We show how the local entropy of the
de Sitter vacuum cancels the entropy of the black hole
horizon, and consider the similar cancellation for the
“antigravastar,” i.e., the white hole with the de Sitter
core.
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2. THERMODYNAMICS 
OF THE DE SITTER STATE

In the Painlevé–Gullstrand (PG) form [11, 12] the
metric in the de Sitter expansion is

(1)

where the shift velocity is , and H is the
Hubble parameter.

A. Local temperature and local entropy. From
Friedmann equations of general relativity it follows
that the vacuum energy density (which is the cosmo-
logical constant Λ) expressed in terms of the activation
temperature  is:

(2)

We assume, that as distinct from the Gibbons–
Hawking temperature related to the cosmological
horizon, the temperature  is the local tem-
perature of the de Sitter vacuum. Then we can deter-
mine the free energy density of the de Sitter vacuum,

, and thus the entropy density
 in the de Sitter vacuum:

(3)

Here we used the quadratic dependence of vacuum
energy density on temperature in Eq. (2).

B. Modified Gibbs–Duhem relation. The quadratic
dependence of vacuum energy on temperature is also
important for consideration of the thermodynamic
Gibbs–Duhem relation for quantum vacuum. It leads
to the reformulation of the vacuum pressure. The con-
ventional vacuum pressure  obeys the equation of
state  and enters the energy momentum tensor
of the vacuum medium in the form:

(4)

In the de Sitter state the vacuum pressure is negative,
.

This pressure  does not satisfy the thermody-
namic Gibbs–Duhem relation, ,
because the right hand side of this equation is zero.
The reason for that is that in this equation we did not
take into account the gravitational degrees of freedom.
Earlier it was shown, that gravity contributes to ther-
modynamics with the pair of the thermodynamically
conjugate variables: the gravitational coupling

 and the Riemann curvature , see [13–

15]. This is because the Einstein–Hilbert action con-
tains the gravitational term , and its contribution
to thermodynamics is somewhat similar to the work
density [16–19]. The gravitational thermodynamic
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variables allow us to write the modified Gibbs–
Duhem relation:

(5)

This equation is obeyed, since  and
.

Equation (5) suggests that one may introduce the
effective pressure, which is modified by gravitational
degrees of freedom:

(6)

Then the conventional Gibbs–Duhem relation is
satisfied:

(7)

The effective de Sitter pressure P is positive,
, and satisfies equation of state ,

which is similar to matter with the same equation of
state. As a result, due to the gravitational degrees of
freedom, the de Sitter state has many common prop-
erties with the nonrelativistic Fermi liquid, where the
thermal energy is proportional to , and with the
relativistic matter with . This means that in
thermodynamics the de Sitter vacuum behaves as the
stiff matter introduced by Zel’dovich [20], where the
speed of sound is equal to the speed of light,

.
C. Entropy of cosmological horizon. In this vacuum

thermodynamics, the total entropy in the volume 
surrounded by the cosmological horizon with radius

 is

(8)

where A is the horizon area. This corresponds to the
Gibbons–Hawking entropy of the cosmological hori-
zon. However, here it is the thermodynamic entropy
coming from the local entropy of the de Sitter quan-
tum vacuum, rather than the entropy of the horizon
degrees of freedom. The vacuum thermodynamics
suggests some holographic connection between these
two entropies.

D. Entropy of black hole horizon. The modified
Gibbs–Duhem relation in Eq. (5) is applicable also to
the thermodynamics of black holes. As distinct from
the de Sitter state, the black hole is the compact
object, and its thermodynamics connects the global
parameters, such as mass M, entropy of horizon, total
electric charge Q and total angular momentum J. This
global thermodynamics can be described by the inte-
gral form of the Gibbs–Duhem relation in Eq. (5).
The curvature here comes from the central singularity
[21]:

(9)
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Since the energy density here is , the inte-
gration of the right-hand-side of Eq. (5) over space
gives for the Schwarzschild black hole:

(10)

Here,  is the Hawking temperature and

 is the Bekenstein–Hawking entropy.
The Eq. (10) is valid also for the white hole, where
temperature and entropy are opposite to that of the
black hole with the same mass [14], TWH(M) =

 and .
E. Entropy of the Schwarzschild–de Sitter cosmo-

logical horizon. Let us consider the possible applica-
tion of the modified Gibbs–Duhem relation to the
Schwarzschild–de Sitter black hole. We discuss the
simple case of the Nariai limit, when the black hole
horizon approaches the cosmological horizon,

 and , where

(11)

In this limit the temperatures of the horizons approach
the Bousso–Hawking value [22]:

(12)

The entropy of the cosmological horizon  can be
obtained by integration of the right-hand-side of
Eq. (5) over space inside the cosmological horizon
with radius :

(13)

In the Nariai limit this gives:

(14)

and one obtains the entropy of the cosmological hori-
zon, which agrees with the Gibbons–Hawking
entropy:

(15)

F. Sommerfeld law. Since the thermodynamics of
the de Sitter state with the thermal energy  is
similar to the thermodynamics of the Fermi liquid, let
us try to exploit this connection. One of the directions
is the Sommerfeld law in Fermi liquid, which states
that the entropy for one atom of the Fermi liquid is

, where  is Fermi energy. We do not know
what are the “atoms of the vacuum,” but from Eq. (3)
it follows that the entropy density of the vacuum
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, where  is the Planck
length and  is the Planck energy. This suggests that
the density of the atoms of the vacuum is  and
entropy per atom of the vacuum is:

(16)

Equation (16) is the full analog of the Sommerfeld law
for Fermi liquid. This analogy also suggests that the
corresponding density of states in the quantum vac-
uum (the analog of density of states at the Fermi level

 in Fermi liquids) is . For bosonic
and fermionic degrees of freedom of this quantum
vacuum the density of states is  and

 correspondingly, which can be com-
pared with the value  suggested in [23].
This huge density of states leads to a very large entropy
of the de Sitter state even for very small temperature of
the vacuum.

So, the quantum vacuum looks as some specific
form of the relativistic Fermi liquid. In particular, the
energy density of such “Fermi liquid” is zero under the
following conditions [24, 25]: there is the full equilib-
rium at , there is no matter and no external pres-
sure. Then one has Minkowski vacuum with

. The non-zero energy density
of the vacuum and thus the cosmological constant in
Einstein equations appear only if these conditions are
violated. In case of de Sitter expansion the nonzero
vacuum energy density is in Eq. (2).

G. Expansion versus Planckian dissipation. The
temperature  is the local temperature, which
matter experiences as an activation temperature [1].
On the other hand, in the nonequilibrium Universe,
matter may have its own temperature [26]. In the pres-
ent nonequilibrium Universe the temperature of mat-
ter is much larger than the temperature of the vacuum,

, while the entropy density of the vac-
uum is dominating. Under this condition the expan-
sion causes the decay of the energy density of matter in
the conventional way, as follows from Einstein equa-
tions:

(17)
For the relativistic gas with the equation of state

, the average energy of particles is E ~ TM ~

, and one has

(18)

That is why the energy relaxation time of matter  in
the de Sitter environment is:

(19)
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At first glance this looks as the Planckian dissipation
[27], with  playing the role of the inelastic relaxation
time. However, Eq. (19) relates the relaxation of mat-
ter and the temperature of the vacuum T. If we con-
sider the temperature of matter, we have

(20)

This means that the Planckian dissipation takes place
only in the limit of low temperature of matter, when

. This probably suggests that the temperature
of matter cannot be smaller than the temperature of
the vacuum.

3. FROM BLACK HOLE TO GRAVASTAR
AND WHITE HOLE

A. Gravastar with contracting de Sitter interior. Let
us apply this approach to such type of gravastars [28–
30], which contain the de Sitter state in the whole
region inside the black hole horizon. Such gravastars
are stationary and have no Hawking radiation. In the
PG form the metric is given by Eq. (1) with the follow-
ing shift velocity:

(21)

(22)

Here,  is the horizon radius.
We assume that it is natural that the shift velocity
 is continuous across the horizon; i.e., there is no

jump in the shift velocity, and only the gradient of the
shift velocity  experiences jump at the horizon.
That is why the shift velocity  is negative both out-
side and inside the horizon. Since the shift velocity is
negative in the de Sitter core, this means that the de
Sitter spacetime in this gravastar is contracting,

 < 0; i.e., the Hubble parameter is
negative, .

In the contracting de Sitter vacuum the local tem-
perature and the local entropy are negative [1]. From
Eq. (3) it follows that  < 0.
Then the entropy of the whole de Sitter region in

Eq. (8) is , where A is the area of horizon.

The de Sitter entropy fully compensates the black hole
entropy of the horizon:

(23)

Equation (23) supports the statement that there is
no entropy and no Hawking radiation in this type of
gravastar. It is also important that the effective vacuum
pressure P in de Sitter core in Eq. (6) is positive. This
matches the pressure induced by the surface tension of
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the thin shell separating de Sitter core from the outer
region.

The absence of entropy in this type of gravastar is
natural, since such gravastars are fully static, and can
be described in static Schwarzschild coordinates. In
this case the gravastar can be considered as the inter-
mediate state between the black hole and the white
hole [14]. While the white hole has negative entropy

, the intermediate state—the fully

static hole—has zero entropy, .
B. Antigravastar: white hole with expanding de Sit-

ter interior. The related type of gravastar is the anti-
gravastar with positive shift function:

(24)

(25)

It is the white hole with expanding de Sitter in the
inner region, where  with . In this
case the inner region has positive local entropy, which
cancels the negative entropy of white hole. As a result,
the total entropy of the antigravastar is also zero:

(26)

C. de Sitter–Schwarzschild black holes. There are
the other models of the de Sitter–Schwarzschild black
hole [31, 32], in which the region with de Sitter vac-
uum is formed from the central singularity of the black
hole. This region has the inner “cosmological” hori-
zon, which grows and finally merges with the outer
horizon forming the gravastar. The inner horizon here
is the white hole horizon, and thus has negative
entropy. After merging with event horizon, the entropy
of gravastar becomes zero. Bekenstein–Hawking
entropy related to horizon is compensated by local
entropy of the de Sitter vacuum. However. in this
model the critical value of mass, at which two horizons
merge, is of the Planck energy scale.

The gravastar as the vacuum star can be considered
using the special variable q, which describes the quan-
tum vacuum [24, 25]. The q-field is in particular rep-
resented by the 4-form field. It was the 4-form field,
which was originally used by Hawking for consider-
ation of the problem related to vacuum energy and
cosmological constant [33]. With the vacuum q-field it
was shown, that while the gravastar is formed, it does
not contain the de Sitter core [34]. Maybe this is
because of the instability of the de Sitter state with
negative temperature. On states with negative tem-
perature see [35] and references therein. Also, the fate
of the Sitter–Schwarzschild black hole depends of the
type of the de Sitter core, which can be either expand-
ing or contracting.
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4. CONCLUSIONS

In conclusion, the local thermodynamics of de Sit-
ter spacetime, with local temperature, local entropy,
and local Gibbs–Duhem relation, can be constructed.
For that one must use also the thermodynamics of the
gravitational degrees of freedom: the gravitational
coupling K and Riemann scalar curvature  as ther-
modynamically conjugate variables. With these vari-
ables added, the thermodynamics becomes similar to
the thermodynamics of the Fermi liquids with the
entropy density in Eq. (3), which is linear in the local
temperature T.

The local de Sitter temperature is determined by
the action of the expanding Universe on the matter
degrees of freedom: it describes the processes of acti-
vation, such as the thermal process of the ionization of
atoms in the de Sitter environment. This activation
temperature has no relation to the cosmological hori-
zon, and is twice the Hawking temperature related to
the horizon. Nevertheless, the total entropy in the
region inside the cosmological horizon is exactly the
horizon entropy . This is a kind of the bulk-
boundary correspondence, which illustrates the mys-
tery of the de Sitter horizon: “It seems fair to say that
although black hole entropy remains highly enigmatic
to this day, the entropy of a cosmological horizon,
such as the de Sitter horizon, is only more mysterious”
[36]. Anyway, if the bulk-boundary correspondence
does take place and the local entropy gives rise to the
Gibbons–Hawking entropy, it is not excluded that the
other types of the local entropy may lead to the gener-
alized entropy, such as discussed in [37–39].

Since the quantum de Sitter vacuum has its local
temperature, then in the quasi-equilibrium states with
matter the system can be characterized by two tem-
peratures: the temperature of the vacuum component
and the temperature of matter degrees of freedom. The
present temperature of the vacuum component is
much smaller than the temperature of matter degrees
of freedom. For example, compared with the tempera-
ture of Cosmic Microwave Background (CMB) radia-
tion it is . However, the entropy of the
vacuum highly exceeds the entropy of matter due to a
high density of states in the quantum vacuum,

. In the inflationary epoch the situa-
tion can be different [26].

The de Sitter thermodynamics determines the
thermodynamics of such objects as gravastars and
antigravastars with the de Sitter cores. It is shown how
the local entropy of the de Sitter state in the inner
region annihilates the global Bekenstein–Hawking
entropy of the horizon. As a result, these gravastar
objects are static, have zero entropy and no Hawking
radiation.
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