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A method for solving the inverse problem of designing the structure of a one-dimensional photonic crystal is
proposed and experimentally implemented. It is known that a one-dimensional photonic crystal with a spa-
tial sinusoidal modulation of the refractive index, has a narrow photonic bandgap at a frequency related to the
spatial frequency of this sinusoid. A reverse engineering method is proposed for one-dimensional photonic
crystals with an arbitrary given reflection spectrum by expanding this spectrum into elementary photonic
band gaps and then summing them. The application of this method to fabricate examples of photonic crystals
with simple shapes of spectral reflection curves is demonstrated.
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INTRODUCTION

Interest in structures with a periodically changing
refractive index originates from the works of Yablo-
novich [1] and John [2], in which it was first shown
that these structures can be used to effectively control
the propagation of light, similar to how semiconduc-
tors change the properties of electrons in solid state
physics. Photonic crystals (PCs) are solid-state struc-
tures in which the refractive index is spatially modu-
lated with a period on the order of a wavelength. Such
an arrangement of the PC structure leads to the
appearance of photonic band gaps (PBGs), frequency
regions in which light propagation inside the PC is for-
bidden. The presence of the PBG makes it possible for
some interesting optical effects to arise, such as the
enhancement of Raman scattering [3], the Purcell
effect [4], generation of the second and third optical
harmonics [5, 6], and others. PCs possess exceptional
flexibility in their ability to control the f low of light,
achieved by using a wide number of design degrees of
freedom of these structures. This f lexibility makes it
possible to implement compact and high-perfor-
mance logic devices based on photonic structures,
which is critical for the further development of pho-
tonic and optoelectronic technologies. In this case,
the problem of reverse engineering of a PC with given
optical characteristics arises, which was solved in var-
ious ways, from mathematical optimization methods
to the use of self-learning algorithms.

EXISTING METHODS OF PC REVERSE 
ENGINEERING

In [7], gradient optimization is used, which is prob-
ably the most popular reverse engineering technique
for photonic structures [8, 9]. The optimization prob-
lem is to find the extrema of the objective function in
some region of a finite-dimensional vector space. In
this case, the arguments of such a function are refrac-
tive indices and layer thicknesses, which are the
adjustable parameters of the photonic device. Within
each iteration, the gradient of the objective function is
calculated over adjustable parameters, and then these
parameters are changed along the direction of the gra-
dient to improve the performance of the photonic
device. The authors of [7] used the gradient optimiza-
tion method to improve the quality factor of a small
volume photonic crystal resonator by more than two
orders of magnitude. The gradient optimization
method can also be used for reverse engineering of
optical [10] and acoustic [11] metamaterials. Such
optimization methods as, for example, optimization
based on mathematical inversion [12] or the so-called
convex optimization [13], which was used in [14] to
create a compact optical demultiplexer, are used for
PC reverse engineering.

Most of the existing researches in the field of solv-
ing the problem of photonic structure reverse engi-
neering of in a varying degree include the use of
machine learning, neural networks (NN), and other
similar algorithms [15–18]. In [19], a method is
described that combines classical optimization algo-
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rithms and NN for PC reverse engineering. With the
ability of learning features from the training dataset,
neural networks can perform both forward prediction
and reverse engineering of various photonic struc-
tures. Combining traditional reverse engineering and
optimization techniques with NN allows to further
increase the efficiency, f lexibility and power of mod-
els. Apart from NNs, machine learning algorithms are
currently gaining popularity in various fields of science
and industry. Their main difference from NNs is that
they require human intervention in the process of their
learning, as well as the fact that they are aimed at sim-
pler tasks and can only work with a structured data set.
The works [20–23] show the successful application of
machine learning algorithms for the reverse engineer-
ing of various photonic structures. It is also worth not-
ing the possibility of using genetic algorithms [24] for
the reverse engineering of the PC.

However, the above methods are not regular, in
each particular case the existence and uniqueness of
the solution are not obvious.

In this paper, we propose a method for solving the
inverse problem of reconstructing the structures of
one-dimensional photonic crystals from the reflection
spectrum. The method under consideration makes it
possible to obtain a PC structure with an arbitrary
given reflection spectrum, which opens up a huge
scope for possible applications. Numerical calcula-
tions were made for several PC structures for various
given reflection spectra, and prototypes of one-
dimensional PCs were fabricated.

DIRECT PROBLEM: CALCULATION 
OF THE REFLECTION COEFFICIENT 

SPECTRUM

First, we indicate the solution we used for the
direct problem of constructing the spectrum of a PC
from a known structure. For this, the method of prop-
agation matrices is used [25]. We use the recursive
method, which is a reformulated matrix method and
has a faster computational speed in practice. The
method is based on the classical way of summing mul-
tiple reflected rays. The recurrent method used by us
makes it possible to calculate the reflection and
transmission coefficients of a structure consisting of

 layers, if these coefficients are known for the m
layers [26]. Let a layered structure, the refractive indi-
ces and thicknesses of which for each mth layer are
equal, respectively,  and , be subjected to a
monochromatic wave at the incident angle θ of the
form:

(1)

Further, we consider only the spatial propagation
of the wave along the normal direction x to the surfaces

+ 1m

mn md

ω( , ) = ( ) .i tE t E er r
of the layers, . Then the field in the
layer m can be represented as:

(2)

Here the coefficient ,
 is the wave vector of the incident wave, and

 is the angle of propagation of the refracted wave to
the axis. Waves with amplitudes  and  propagate,
respectively, along and opposite to the axis. These
amplitudes can be obtained from the boundary condi-
tions for the electric and magnetic fields and from the
Fresnel formulas. The reflection coefficients from the

mth and th layers,  and 

are related by the recursive Parret relation:

(3)

This expression was obtained taking into account the
continuity of the x-components of the wave vectors at
the interface between the mth and th layers, as
well as the boundary conditions for s and p light
polarizations. Here is the notation:

(4)

where  is the polarization factor, which equals

 for S-polarization and  for -

polarization. The calculation by the recurrent Parret
formula starts from the last layer, for which .
The reflection coefficient for the entire system is equal
in intensity to .

INVERSE PROBLEM: A METHOD
FOR CONSTRUCTING THE PC STRUCTURE

Consider a one-dimensional PC with a total opti-
cal thickness L, whose refractive index is modulated as
follows:

(5)

where x is the optical path,  is the wavenum-

ber, and φ is the initial phase. We choose A and B such
that  varies within fixed limits from  to :

, . In this example, the value of φ
will not affect the result, so we will choose . We
get:

(6)
A PC with such modulation of the refractive index has
a very narrow PBG at the wavelength . To calculate
the reflection coefficient spectrum of this structure,
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Fig. 1. (Color online) Theoretically calculated reflection
spectrum of a PC with refractive index modulation (6) for

-polarization. The result is obtained for  μm, opti-
cal path of each layer  = 20 nm, , ,

 nm. Inset: dependence of the refractive index on
the depth of the photonic crystal, the area from 20.0 to
20.8 μm is shown.

s = 40L
δl 1 = 1.14n 2 = 1.22n

λ0 = 500
we approximate the continuous dependence (6) as a
piecewise constant one; i.e., we divide the crystal into
layers with optical thickness . Coordinate of
the boundary of each th layer is , its refrac-
tive index . The physical thickness of the
layers is defined as . The acceptability of
approximating a continuous function  to a piece-
wise constant one is discussed in [27]. The calculation
result is shown in Fig. 1. The inset shows the piecewise
constant dependence of the refractive index on the
crystal thickness used in the calculation. The spec-
trum does indeed contain a narrow PBG at a given
wavelength.

This leads us to the idea of reverse engineering one-
dimensional PCs by approximating any given reflec-
tion spectrum with these narrow band gaps. The natu-
ral restriction imposed on the specified spectrum is
that it should not have too narrow spectral features:
the spectral width of the feature should not be less
than the minimum band gap.

Let  be the reflection spectrum for which we
want to choose the appropriate structure of a one-
dimensional PC. Let’s make this function discrete: let
this spectrum consist of N points , . Let
the crystal have M layers, the thickness of the mth layer
is , the optical path on each th layer is ,

 is the optical path from the PC sur-
face to the beginning of the ( )th layer,

. The refractive index varies from  to .
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Then, in accordance with equation (6), we obtain an
expression for the refractive index of the th layer:

(7)

Here, ,  are the normalization coefficients, which
are chosen so that the expression in square brackets
falls into the interval . . So, for exam-
ple, let for each optical distance  the sum of N har-
monic functions is equal to:

(8)

and ,  are the maximum and minimum values
of  throughout the entire crystal, respectively, then

, . The question of

phase  selection remains. For each ith harmonic

function, the phase is chosen as follows: ,

where  is the average wavelength of the spectral
range in which the inverse problem is solved. This
dependence was chosen in order to evenly distribute
the beats arising between close harmonics over the
crystal thickness.

EXAMPLES OF SOLVING 
THE INVERSE PROBLEM

To use the method described above, in the case of
each given spectrum, it is necessary to choose the total
crystal thickness L. Next, the crystal is divided into

 layers, the thickness of each layer  is
much less than the wavelength of light. In this work,
the value of  nm was chosen.

As the first example, the structure of a one-dimen-
sional PC was modeled, the reflection spectrum of
which is a triangular function with a width from 470 to
710 nm with a vertex at 590 nm, the value of the func-
tion at the vertex is 0.9; this choice is due to the fact
that the reflection function cannot exceed 1, and in
this case, a unit value of the reflection coefficient of a
photonic crystal can be obtained too easily and trivi-
ally. Total optical path  nm, number of lay-
ers , number of harmonic functions

.  and  were chosen as the
limiting values of the refractive indices of the layers.
Comparison of the specified reflection spectrum and
the reflection spectrum calculated by the recursive
method for a given PC structure is shown in Fig. 2a,
and the view of this structure is shown in Fig. 2b. The
spectrum is quite close to the desired one; there are
spurious oscillations caused by Fabry–Perot interfer-
ence at the boundaries of the structure.
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Fig. 2. (Color online) Theoretical calculations for a pho-
tonic crystal with a reflection spectrum in the form of a tri-
angle: (a) the specified reflection spectrum and the reflec-
tion spectrum calculated using the recurrent method;
(b) representation of the structure of a given crystal as a
dependence of the refractive index on the optical path
inside the crystal; (c) enlarged area from 32 to 34 μm.

Fig. 3. (Color online) Theoretical calculation of a pho-
tonic crystal with a triangular reflection spectrum in com-
parison with the desired spectrum for values of the total
optical thickness of the structure L from 10 to 50 μm.
To determine the significance of such a parameter
as the structure thickness, a series of photonic crystals
with a triangular shape of the spectral response was
simulated. Within the limits of the series, different
restrictions were placed on the total optical thickness
of the structure L from 10 to 50 μm. The simulation
results are shown in Fig. 3. It is noticeable that with an
increase in the thickness of the structure, the ampli-
tude decreases and the frequency of parasitic oscilla-
tions increases, the spectrum gradually approaches the
desired one. Note that the number of harmonic func-
tions that are used to approximate the spectrum is in
all cases constant and equals , so their num-
ber does not affect spurious oscillations. Note that at a
wavelength of 300 nm there is an insignificant artifact,
the second-order PBG.

As a second example, a PC was modeled with a
reflectance spectrum in the form of a parabola with a
width of 580 to 820 nm and a peak at 700 nm. The total
optical path is L = 250000 nm, the limiting values of
the refractive index are the same as for a PC with a tri-
angular spectrum. A comparison of the specified and
calculated spectra is shown in Fig. 4a, a view of the PC

= 256N
structure is shown in Fig. 4b. The theoretical spectrum
approximates the given one quite well.

PRODUCTION OF EXPERIMENTAL SAMPLES

For experimental verification of the proposed
method, one-dimensional photonic crystal structures
were fabricated and their optical spectra were mea-
sured. In this work, one-dimensional PCs are fabri-
cated using the electrochemical silicon etching tech-
nique described in [28]. It was shown that this tech-
nique can be used to produce photonic crystals with
thousands of layers, while optical losses are deter-
mined mainly by Rayleigh scattering, do not exceed a
few percent for the middle of the optical range even for
samples 100 μm thick, and rapidly decrease with
increasing wavelength.

In this work, the following parameters of the etch-
ing process were used: the raw material is crystalline
silicon with (100) surface orientation, the specific
resistance is 0.005 Ω cm, the minimum and maximum
current densities jmin = 40 mA/cm, jmax = 160 mA/cm,
the electrolyte is an aqueous–alcoholic solution of
hydrofluoric acid (HF) in a mass concentration
of 28%.
JETP LETTERS  Vol. 117  No. 11  2023
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Fig. 4. (Color online) Theoretical calculations for a pho-
tonic crystal with a reflection spectrum in the form of a
parabola: (a) the specified reflection spectrum and the
reflection spectrum calculated using the recurrent
method; (b) representation of the structure of a given crys-
tal as a dependence of the refractive index on the optical
path inside the crystal; (c) enlarged area 200–201 μm.

Fig. 5. (Color online) Experimental PC reflectance spec-
trum compared to the desired triangular spectral response
function.

Fig. 6. (Color online) Experimental PC reflectance spec-
trum compared to the desired parabolic spectral response
function.
On the basis of the obtained calculations, proto-
types of one-dimensional PCs were fabricated, their
modulation of the refractive index corresponded to
those shown in Figs. 2b and 4b. The parameters of the
samples (profile  and thickness L) corresponded
to the calculated ones. The optical spectra were mea-
sured according to the procedure described in [28].
The reflection spectra of the obtained samples were
recorded using an OceanInsight QEPRO laboratory
spectrometer at normal incidence. The light source
was a halogen lamp with a spectral range of 400–
1200 nm. The measured reflectance spectra for both
examples are shown in Figs. 5 and 6. As can be seen,
the experimental spectra are in good agreement with
the initially specified spectra, both in shape and posi-
tion. Just as in the theoretical graphs, there are unde-
sired oscillations, the amplitude of which does not
exceed 10% of the value of the useful signal. For the
case of a parabolic spectrum, there are broadenings at
the edges of the range associated with the finite mini-
mum band gap of the PC. The experimentally
obtained form of the function in the given region cor-
responds to the given one.

( )n x
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CONCLUSIONS

A new reverse engineering method for one-dimen-
sional PCs was demonstrated, which makes it possible
to construct a PC structure from a given spectral func-
tion of the reflection coefficient as a dependence of
the refractive index on the depth of the structure.
Examples of application of the method on spectral
functions of a simple form are shown. The method was
confirmed experimentally; PC samples were fabri-
cated by electrochemical etching of silicon. The con-
sidered method can be suitable for other fabrication
methods in which it is technically possible to set an
arbitrary spatial profile , for example, electro-( )n x
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chemical etching of aluminum, titanium and two-
photon photopolymerization with a gradient change
in the refractive index.
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