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The theory of a random laser with an interface in the form of random or scale-free networks whose nodes are
occupied by microcavities with quantum two-level systems has been proposed for the first time. The micro-
cavities are coupled to each other through light-guiding channels forming edges of the network. It has been
shown that such a laser has a number of spectral features associated with the statistical properties of the net-
work structure. Among them are the existence of a topologically protected Perron eigenvalue caused by the
presence of a strong mean field at the node of maximum influence located in the central part of the network
and the delocalization/localization of radiation modes depending on the probability of coupling between
arbitrary microcavities. The results obtained in this work open prospects for the fabrication of new low-
threshold laser sources.
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Random lasers are among the most fascinating
manifestation of macroscopic coherence caused by
the random scattering of light in a disordered optically
active medium [1]. The main physical principles of the
operation of modern random lasers were proposed by
V.S. Letokhov for atomic systems [2]. These principles
are continuously extended and refined taking into
account the variety of media where the random laser
effect is observed [1, 3–5]. Since such lasers do not
require external cavities, their properties are deter-
mined by the intensity of radiation scattering in the
medium. The weak scattering of photons by particles
of the medium forms the diffusive random laser
regime, whereas strong scattering leads to the Ander-
son localization of radiation [3]. These key properties
make random lasers practically useful.

However, the effect of the disorder of the medium
on random laser regimes has yet to be studied (see [6]).
The authors of [4] implemented a random laser based
on a structure of nanofibers forming a random graph,
which were placed in the rhodamine 6G dye responsi-
ble for the gain of radiation. Our analysis [7, 8] of the
formation of macroscopically coherent radiation in
complex network structures showed that the lasing
threshold decreases rapidly with an increase in the
connectivity of the graph simulating the medium,
which was detected experimentally for random lasers
in [4]. It is noteworthy that the investigation of such
complex network structures is one of the most inter-
esting and important fields of modern physics and has
a pronounced interdisciplinary significance [9].

The aim of this work is to reveal the mechanism of
lasing in the medium with the topology of a random
(Fig. 1a) or scale-free (Fig. 1b) undirected graph
formed by coupled microcavities.

The system under consideration can be represented
as a network with nodes where two-level systems, e.g.,
quantum dots, are located. This can be achieved, e.g.,
as in [5] by placing two-level systems in a photon-crys-
tal structure with channels for the propagation of pho-
tons. Alternatively, two-level systems can be placed in
microcavities, which are physically coupled micropil-
lars [10]. To be more specific, in this work, we use the
model of coupled microcavities (see [11]). Thus, the
random laser model consists of N microcavities each
containing the same two-level system characterized by
a resonance transition frequency (energy) of .
Microcavities are located at nodes of the complex net-
work with the edges transmitting light without loss.
The field in the ith microcavity is characterized by the
photon annihilation (creation) operator  ,

. The Hamiltonian of the system in the
rotating wave approximation can be represented in the
form [12]
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Fig. 1. (Color online) Interface of the random laser medium in the form of the (а) random (kmax = 9 and kmin = 1) and (b) scale-
free (kmax = 25 and kmin = 2) networks at ; kmax/min is the maximum/minimum degree of nodes. Colors characterize
the eigenvalues of the adjacency matrix . (c) Log–log distribution of degrees of nodes of the corresponding networks. The other
details are presented in the main text.
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where the two-level system in the ith microcavity is
characterized by the inversion operator  and ladder
operators ; g is the coupling constant of the two-
level system with a quantum field mode in the
ith microcavity at the frequency ωph, i;  specifies
the interaction between microcavities through wave-
guides (photon channels), which is included through
the symmetric adjacency matrix τij with zero diagonal
elements; and pij is the probability of coupling between
the ith and jth microcavities (if the ith and jth micro-
cavities with i ≠ j are coupled, τij = 1).

Figure 1 presents the interface of the random lasers
in the form of the Erdős–Rényi random network
(Fig. 1a) and scale-free network (Fig. 1b), which were
simulated numerically using the Python NetworkX
library. The sets of points and approximating curves in
Fig. 1с are log–log distribution functions of degrees of
nodes of these networks. Curves correspond to the

Poisson ( ) and power-law ( )

distributions, where  is the

average degree of nodes. The simulation parameters
were chosen such that both graphs in Fig. 1 have sim-
ilar statistical characteristics. In particular, 
and  for the random network, where

 is the normalized second moment of
the degrees of nodes. The degree  for the scale-free
network and its statistical properties can be estimated
in the continuous approximation using approaches

presented in [9]; setting , we obtain
 and, correspondingly,  and

. The scale-free network has hubs, i.e., nodes
with the highest connectivity indicated by four blue
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points for the distribution function in the lower right
corner of Fig. 1с.

We used the Heisenberg–Langevin approach in
the mean field approximation; taking into account
Eq. (1), this approach leads to Maxwell–Bloch-type
equations:

(2a)

(2b)

(2c)

where , , and  are the
means of the corresponding operators; Γ is the polar-
ization relaxation rate, which is taken the same for all
two-level systems;  is the rate of losses of photons in
the ith microcavity; γP is the pumping rate; and γD is
the inversion relaxation rate. Further, we exclude
“fast” oscillations and consider steady states of the
system at the frequency . The substitution of

 and  into Eqs. (2a)
and (2b) gives

(3a)

(3b)

where  is the detuning from resonance
for the ith microcavity, which is assumed to be quite
small  for all . The average popula-
tion inversion in Eq. (2c) is given such that  and

 (cf. [6]).

The value  in Eqs. (3a) and (3b) physically
means the evolution of both the (mean) field and the
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Fig. 2. (Color online) Eigenfrequencies of the random
lasers on the complex ω plane for the (red circles) random
and (blue circles) scale-free networks presented in Fig. 1 at

, , and ;  and  are the random
variables uniformly distributed in the intervals 
and , respectively.

σ = 0.1z Γ = 0.5 = 0.6J Δi κi
−[ 0.5,0.5]

Γ Γ[0.5 ,0.8 ]
polarization at the frequency  of the transition in
two-level systems.

The substitution of the polarization  expressed
from Eq. (3b) into Eq. (3a) yields the following equa-
tion for the complex field amplitude  in the
ith microcavity:

(4)

where  and the parameters ω, Δi, κi, Γ, and
J are normalized to g.

We now analyze an important limiting case of (4),
where the ith microcavity is isolated from the remain-
ing network structure. In this case,  in Eq. (4),
and we obtain the expressions

(5)

which determine the characteristic high- (ω1) and
low-frequency (ω2) elementary oscillations, where

. A negative imaginary part of the fre-
quency Im[ω] < 0 in Eq. (5) describes energy dissipa-
tion in the system, whereas Im[ω] > 0 corresponds to
inversion-induced gain. In particular, in the inver-
sion-free case, i.e., at , the characteristic fre-
quencies ω1 and ω2 correspond to conventional polar-
itons of the upper and lower dispersion branches,
respectively [13]. At the maximum inversion ,
Raman polaritons appear, corresponding to the gain
of radiation in the medium [14]. Further, conditions
for the transition of the considered system of micro-
cavities to lasing when  are of interest. For
numerical calculations, it is convenient to use the ini-
tial system of Eqs. (3a) and (3b) under the assumption
that the detuning  and the parameter  for any
ith mode of the random laser are random variables
uniformly distributed in certain intervals (cf. [6]).

Figure 2 presents the dependences of the imaginary
parts of the eigenfrequencies of the random laser on
their real parts that are slightly below the lasing thresh-
old determined by the condition Im[ω] = 0 and corre-
spond to the graphs in Fig. 1. In agreement with
expectations, two regions of solutions are formed, cor-
responding to the characteristic frequencies ω1 and ω2.
The numerical values of the parameters /g and /g
for the dependences in Fig. 2 and below in the paper
were chosen such that the condition of strong coupling
between each two-level system and the field, ,
is satisfied hardly (cf. [10]).

We analyze the arrangement of points in Fig. 2.
Since both graphs in Fig. 1 have close statistical char-
acteristics  and ζ, the “envelopes” of the discrete
dependences presented in Fig. 2 are fairly close to each
other. A fundamental feature of the spectrum of eigen-
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frequencies is the existence of the isolated (maximum
in absolute value) Perron eigenvalue (the leftmost red
and blue points in Fig. 2). This is directly due to the
properties of the spectrum of the adjacency matrix 
for complex networks for which the Perron eigenvalue
is in the interval  (see, e.g., [15]). Light yellow
nodes located approximately in the centers of graphs
in Figs. 1a and 1b correspond to the Perron eigenval-
ues. In particular, the Perron–Frobenius theorem
guarantees (for τij) the existence of the nondegenerate
positive maximum Perron eigenvalue corresponding
to the eigenvector with completely positive elements;
since Eq. (1) includes –τij, the corresponding Perron
eigenvalues in Fig. 2 are negative.

We note that the Perron eigenvalue does not neces-
sarily correspond to a hub, i.e., a node with the highest
connectivity. The Perron eigenvalue characterizes the
node of maximum influence determined by the eigen-
vector centrality criterion [16]. For example, random
networks do not have hubs but have the node of max-
imum influence indicated by the light yellow point in
Fig. 1a. The existence of such nodes is physically due
to a nonzero average (over nodes of the network) field

(6)

where  is the degree of the jth node.

To study the Perron eigenvalue, we substitute the
annealed network approximation for the adjacency

matrix in the form  (cf. [7, 9]) into Eq. (4).
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Solving the resulting equation with respect to , we
obtain

(7)

where  is the average loss of photons in a given inter-
val of  and ωP is the Perron eigenvalue for the fre-
quency. Expression (7) means that the field at the ith
node corresponding to the Perron eigenvalue is com-
pletely determined by the mean field  induced by the
network structure. Substituting Eq. (7) into Eq. (6),
we obtain an equation for ωP, from which

(8a)

(8b)

where we omit the detuning  assuming that  ≪ 

and consider the simple case . Formulas (8a)
and (8b) are in agreement with the numerical simula-
tion (see Fig. 2, where Im[ωP, 1] is shown by the pink
dashed line). The characteristic low frequency ωP, 2
remains imaginary: Im[ωP, 2] is given by the green
dashed line in Fig. 2, which physically means the fast
dissipation of low-frequency perturbations in the pres-
ence of high-frequency oscillations at the frequency of
the Perron eigenvalue Re[ωP, 1]. We note that, since
the parameter ζ for the scale-free network is larger in
absolute value than that for the random network
(cf. [7]), the Perron eigenvalue in the former case
(thick blue point) is to the left of the Perron eigenvalue
for the random network marked by the bold thick red
point in Fig. 2.

We now consider points in Fig. 2 that are located
along the line of average loss of photons Im
and for which . This assumption is justified
because of the properties of the adjacency matrix,
which has a relatively large Perron eigenvalue and
other smaller eigenvalues (see [15]). This group
includes both points with significant influence and
hubs existing in the scale-free network (see Fig. 1b).
As a result, from Eq. (4), the characteristic frequencies
are

(9)

where  and  is the detuning
from resonance also including the degree  of the
ith node. It is convenient to perform the subsequent
analysis of the discussed points in the limit

, i.e., under the assump-
tion that  is large enough. Then, it follows from
Eq. (9) that (cf. Eq. (8))
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(10b)

which are in good agreement with the numerical cal-
culation shown in Fig. 2. In this case, the spread of
positive eigenfrequencies along the horizontal axis is
larger for the scale-free network because the rightmost
blue points correspond to hubs.

We now consider the points in Fig. 2 located in a
relatively narrow vertical band –1 < Re[ω] < 1. These
points include two groups that are closely located in
the upper and lower parts of Fig. 2 and correspond to
the main set of the eigenvalues of the system of
Eqs. (3a) and (3b) and to the eigenvalues of the adja-
cency matrix  (cf. [15]). A fundamental feature of
these points is that eigenvalues corresponding to these
points can “attract” each other because the (random)
matrix corresponding to the system of Eqs. (3a) and
(3b) is non-Hermitian (cf. [17]). More precisely, we
deal here with the non-Hermitian localization of radi-
ation significantly different from (Hermitian) Ander-
son localization, which is manifested in the statistical
properties of spectral characteristics (see, e.g., [18]).
Such (non-Hermitian) localization significantly
affects the statistical distribution of spectral lines: the
deviation of this distribution from the Wigner distribu-
tion of distances between levels, which is characteristic
of Anderson localization, was demonstrated in the
experiment with the random laser (see [4, 19]).

The modes corresponding to the points in the upper
part of Fig. 2 first tend to enter the half-plane, where
lasing occurs; i.e., Im[ω] > 0. Their “mobility” is due
to their topological correspondence to nodes with a
small number of links or low-influence nodes located
predominantly at the periphery of graphs (see Fig. 1),
which is also confirmed by experimental results
obtained for lasing in random lasers on graphs [4].

To determine the characteristic frequencies corre-
sponding to the points grouped near ω = 0, Eq. (9) can
be used under the assumption that  is
small, where  is the minimum degree of nodes in
the graph. The numerical simulation shows that lasing
begins when points in the upper part of Fig. 2 enter the
half-plane of real eigenvalues, which is described by
the condition

(11)

If , , , from Eqs. (9) and (11), we obtain

(12)

i.e., the frequency ω1 becomes real. In this limit, the
last term in Eq. (11) can be neglected and the lasing
condition takes a form very universal for laser physics
(cf. [20]).
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Fig. 3. (Color online) (a) Real and (b) imaginary parts of the eigenfrequencies of the random laser, which is a random graph, ver-
sus the common logarithm of the population difference . The remaining parameters are the same as in Fig. 2.

zz
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Figure 3 presents the dependences of Re[ω] and
Im[ω] for the random laser on the logarithm of the
population inversion . It is seen in Fig. 3a that points
located in the band –1 < Re[ω] < 1 are displaced with
increasing inversion . The eigenfrequencies corre-
sponding to this group of points in Fig. 3a approach
each other, which characterizes the pulling of the las-
ing frequency to the transition frequency in the two-
level system ω0 (in this case, , cf. [6]).

At the same time, the bottom (blue) line in Fig. 3a
corresponding to the frequency of the Perron eigen-
value Re[ωP, 1] changes slightly with increasing . A
similar behavior is shown by the blue and yellow lines
in the upper part of Fig. 3a, which correspond to the
rightmost points in Fig. 2 and to nodes having signifi-
cant influence in the random network next after the
Perron eigenvalue (cf. Fig. 1a). Thus, microcavities
located at the nodes of maximum influence remain
topologically protected and are hardly involved in the
frequency pulling process; the imaginary parts of the
corresponding eigenfrequencies do not enter the gain
region Im[ω] > 0 (see Fig. 3b).

The asymptotic behavior of lines in Fig. 3b above the
lasing threshold can be clarified as follows. Let the two-
level system be completely inverted; i.e., . In this
case, under the assumption that  in
Eq. (9), we obtain . Separating the
real and imaginary parts in Eq. (9) (see, e.g., [13]), we
obtain Im[ω1] = 1 –  0.59 and Im[ω2] =

 –1.41, which are in good agreement with
the maximum and minimum values of the extreme
lines in Fig. 3b at log σz = 0, respectively.
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The characteristic dependences of the real and
imaginary parts of the frequency ω on the population
difference in the scale-free network (Fig. 1a) are sim-
ilar to those in Fig. 3. Significant differences between
these dependences appear when the distribution of
degrees of nodes has a power-law form  with
the exponent  (cf. [7]). The role of hubs in
this network increases strongly, which is manifested in
their spectral characteristics: hubs begin to compete
with the Perron eigenvalue in “influence” on the net-
work. In this case, according to the numerical calcula-
tion, it is reasonable to take into account correlations
between nodes with degrees higher than ζ (cf.
Eq. (8a)). This limit will be analyzed elsewhere.

Finally, in the context of the physics of random
lasers, it is necessary to pay attention to the behavior of
the effective volume of modes defined as (cf. [6])

(13)

where  is the field amplitude in the ith cavity for the
jth eigenvector of the system of Eqs. (3a) and (3b).

The effect of the statistical properties of the ran-
dom network on the localization of states in the con-
sidered problem is demonstrated in Fig. 4. This figure
presents the dependence of the average volume V filled
by the jth mode of the random laser averaged over a
large number of realizations of random graphs on the
probability p = pij of connection between each pair of
N nodes. In this case, the average degree of nodes is

 [9]. The dependence in Fig. 4
was calculated beginning with the value p = 0.01 cor-
responding to .
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Fig. 4. (Color online) Average volume of modes V of the
random laser averaged over a large number of realizations
of random graphs versus the probability p; points are
obtained numerically, and the solid line is their approxi-
mation. The remaining parameters are the same as in
Fig. 2.
The random network in the region  con-
sists of separate microcavities weakly coupled to each
other; as a result, calculated f luctuations of the vol-
ume of modes are large; the minimum value of any
mode is unity at its complete localization, according to
definition (13).

The degree of connectivity of the random graph
increases with p (and, correspondingly, with ). The
value p = 0.1 in Fig. 4 corresponds to , at
which the graph already has a giant (connected) com-
ponent. Thus, the increase in the average volume with
the average degree of nodes  indicates the transition
from localized states (at ) to the delocalization
of radiation inherent in a random graph with a giant
connected component. The saturation of the corre-
sponding curve is due to the disappearance of isolated
nodes in the random graph, which occurs in the limit

 (see Fig. 4).

We note that the numerical calculation shows that
the behavior of the average volume of modes V (i.e.,
the localization/delocalization of radiation) for the
random laser considered in this work as a function of
other material parameters of the random laser (e.g.,
population inversion) can differ from the behavior of
“conventional” random lasers demonstrating the
almost exponential delocalization of radiation in their
structure [6]. In our case, this effect depends not only
on the statistical properties of the graph (adjacency
matrix) but also on the characteristic parameters of the
decoherence, dissipation, and detuning from reso-
nance (cf. [17]). In the general case, the investigation
of the localization/delocalization of radiation for var-
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ious combinations of these parameters is a very inter-
esting and nontrivial (at least, theoretically) problem,
which we will consider elsewhere.

To summarize, we have studied the model of cou-
pled microcavities, which contain two-level systems
and are located at nodes of the complex (random or
scale-free) network whose edges are light-guiding
channels coupling these microcavities. The system
under consideration demonstrates the main properties
of random lasers including both localization and delo-
calization of light depending on the statistical proper-
ties of the network structure. In this aspect, the pro-
posed model of random laser is in qualitative agree-
ment with recent experiments with the random laser
formed by a random network of nanofibers. At the
same time, the considered model of laser has a quite
interesting spectral property: the (isolated) Perron
eigenvalue maximal in absolute value exists for fre-
quencies because different nodes make different con-
tributions to lasing (statistical properties of the degrees
of different nodes are different). We are going to exam-
ine these problems for a wider range of the material
parameters of the laser than the range studied in
this work.
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