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The inverse Faraday effect (generation of a time-independent magnetic moment under the action of a circu-
larly polarized electromagnetic wave) in mesoscopic superconducting samples with a finite gap in the exci-
tation spectrum is analytically described. Within the modified time-dependent Ginzburg–Landau theory
(Kramer–Watts-Tobin equations) for thin superconducting disks, it is shown that the temperature depen-
dence of the optically induced magnetic moment is nonmonotonic in a wide range of parameters and con-
tains a maximum. This maximum is due to the dephasing between the spatial oscillations of the magnitude
and the phase of the order parameter, which arises with a decrease in the temperature and, correspondingly,
in the characteristic relaxation time of perturbations in the superconducting condensate.
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The study of the mechanisms allowing one to con-
trol the magnetic states in superconductors using elec-
tromagnetic radiation is a rapidly developing field of
condensed matter physics, which is motivated by the
prospects for their applications in quantum computing
devices [1, 2], elements of superconducting spintron-
ics [3, 4], and dynamically tunable Josephson systems
[5–8]. The key parameter that determines the charac-
ter of the radiation impact on superconductors is the
ratio between the photon energy and the size of the gap
in the excitation spectrum of the superconductor. For
optical radiation, this ratio is much larger than unity;
therefore, the dominant mechanism of the radiation
impact on a superconductor is the creation of quasi-
particles, which can lead either to sample heating and
suppression of superconductivity or to stimulation of
superconductivity caused by an increase in the super-
conducting gap because of the generation of nonequi-
librium quasiparticles [9–12]. In recent experiments,
it was demonstrated that local heating of a supercon-
ductor by a focused laser beam makes it possible to
control the position of single Abrikosov magnetic vor-
tices [13], which provides the possibility of creating
Josephson junctions with a tunable current–phase
relation [5].

At the same time, for radiation with a photon
energy less than the superconducting gap, the effects
that depend not only on the photon energy and their
f lux density but also on the electromagnetic wave
polarization become significant. Specifically, in a
series of works [14–17], it was shown that circularly

polarized infrared radiation incident on a supercon-
ducting sample can induce a magnetic moment with a
nonzero time-averaged magnitude and with the direc-
tion determined by the incident wave polarization.
This phenomenon called the inverse Faraday effect
was first predicted for materials without absorption by
L.P. Pitaevskii [18] and was observed experimentally
in ferromagnetic insulators [19–22] and then in con-
ducting materials [23, 24] (theoretical approaches to
the description of the inverse Faraday effect in normal
metals and semiconductors were developed in [25–
33]). At the same time, the use of ultrashort laser
pulses makes it possible to induce and control oscilla-
tions of the magnetic moment in a sample with a
period on the order of several femtoseconds and a
decay time on the order of a picosecond [22]. In fact,
the impact of a circularly polarized wave on a medium
is similar to the effect of a static magnetic field induc-
ing the polarization of electron spins and the orbital
diamagnetic response. In this context, the study of the
inverse Faraday effect in superconducting systems is of
particular interest, since diamagnetic superconducting
currents induced by a laser pulse under certain condi-
tions can exist indefinitely after the end of the pulse. In
particular, if the magnitude of the optically induced
magnetic moment is sufficient to generate an
Abrikosov vortex or a state with nonzero vorticity in a
multiply connected superconductor, then the resulting
magnetic states are topologically protected and are not
destroyed when the radiation is switched off [16].
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The simplest description of the inverse Faraday
effect in superconductors can be developed within the
time-dependent Ginzburg–Landau theory [14]. In
this case, the effect is primarily due to the electron–
hole asymmetry in superconductors, which leads to
the presence of the imaginary part of the relaxation
constant in the Ginzburg–Landau equation and, as a
consequence, to oscillations in the magnitude of the
order parameter under the action of the electromag-
netic wave. The theory developed in [14–17] makes it
possible to analyze the frequency dependences of the
optically induced magnetic moment and describe the
formation of topologically protected magnetic states
in multiply connected samples, but its applicability is
significantly limited by the case of gapless supercon-
ductors and a narrow temperature range near the
superconducting transition temperature.

At the same time, it is well known that the range of
applicability of the time-dependent Ginzburg–Lan-
dau theory can be significantly expanded within the
Kramer–Watts-Tobin approach [34–38], which takes
into account the finite superconducting gap in the
presence of a sufficiently strong electron–phonon
coupling. In this paper, the theory of the inverse Far-
aday effect is generalized within this approach for the
case of finite-gap superconductors, which makes it
possible to analyze the temperature and frequency
dependences of the optically induced magnetic
moment in a wide range of system parameters. In par-
ticular, it is shown that, in a wide range of radiation
frequencies, the temperature dependence of the mag-
netic moment M is nonmonotonic and has a maxi-
mum determined by a change in the ratio between the
radiation frequency and the characteristic inverse
relaxation time of the magnitude of the order parame-
ter, which depends on the time. Although this phe-
nomenon is also revealed in the case of gapless super-
conductivity (see [14]), it is important to take into
account the finite superconducting gap because it
leads to a shift of the maximum of the magnetic
moment M down in temperature and, thus, makes it
possible to specify the most realistic conditions for the
experimental observation of the inverse Faraday
effect.

As a model object, we consider a thin supercon-
ducting disk of the thickness L with an arbitrary ratio
between the radius R and the superconducting coher-
ence length ξ. We assume that a circularly polarized
plane electromagnetic wave with a frequency ω and a
wave vector k perpendicular to the disk surface is inci-
dent on the disk (Fig. 1). To describe the electromag-
netic wave, we use the vector potential in the gauge

 = , where
 is the magnitude of the wave vector and  is

the amplitude of the electric field inside the supercon-
ductor. The relation between this field and the electric

�= ReA A ( ) − ω − ω − 0( / )Re i t ikz
y xcE i ee e

ω= /k c 0E
field of the incident electromagnetic wave  signifi-
cantly depends on the shape of the disk and is deter-
mined by the depolarization effects. To estimate this
relation, we replace the superconducting disk with an
ellipsoid with semiaxes R, R, and  and use the
solution of the standard depolarization problem [39],
which gives

(1)

where  is the permittivity of the metal, which can
be calculated under the assumption that the contribu-
tions from normal and superconducting electrons are
additive. In the limit of the local relation between the
current and the vector potential for the superconduct-
ing condensate under the assumption τtr ≪ 1/ω, where
τtr is the characteristic impurity scattering time, the
expression for  at temperatures below the super-
conducting transition temperature Tc has the form

(2)

where the second term corresponds to the contribu-
tion from superconducting electrons [40], the third
term corresponds to the contribution from normal
electrons,  is the square of the plasma
frequency in metal,  is the total electron density,

, and  is the Riemann zeta
function. The type of dependence  and, respec-
tively, the linear relation between  and  are deter-
mined by the material and geometric parameters of
the sample. We note that the permittivity at  is
determined mainly by normal electrons, and its tem-
perature dependence can be neglected. In the opposite
limit ( ), the main contribution to the depolar-
izing factor comes from superconducting electrons. In
this case, there is a resonant enhancement of the
acting electromagnetic field at the frequency ω* ~

 and the corresponding enhance-
ment of the magnetic moment. In what follows, we
focus on the dependence of the magnetic moment of
the disk on the acting electromagnetic field. Under the
assumption that the geometric dimensions of the disk
are much smaller than the London penetration
depth λ, electromagnetic wavelength , and skin
layer depth , the amplitude of the
electromagnetic wave in the disk is given by Eq. (1)
and is independent of the spatial coordinates.

To describe the dynamics of the order parameter,
we use the Kramer–Watts-Tobin equation [38], where
the imaginary part of the relaxation constant is intro-
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Fig. 1. (Color online) Schematic representation of the
superconducting disk of the radius R and the thickness L
exposed to the electromagnetic wave with the circular
polarization σ. The figure also shows the Cartesian and
polar coordinate systems used in the calculations.
duced in order to phenomenologically describe the
electron–hole asymmetry in the density of states:

(3)

Here,  and b are the conventional parameters of the
Ginzburg–Landau theory,  is a magnetic
flux quantum ,  is the coherence length inter-
polated to zero temperature, and .
Equation (3) differs from the time-dependent Ginz-
burg–Landau equation in the additional parameter

 related to the inelastic electron–phonon
relaxation time τph and in the imaginary part of the
relaxation constant γ, which has a relative order

. For low-temperature superconductors
and a number of high-temperature ones, Tc/EF ! 1,
but the ratio Tc/EF may be not too small for some
high-temperature superconductors.

Although Eq. (3) is valid in a narrow region near
the superconducting transition temperature, which is
determined by the condition  (where

 is the order parameter interpolated to
zero temperature), this constraint is less stringent than
the limit of applicability of the time-dependent Ginz-
burg–Landau theory [38] . Thus, the use
of Eq. (3) makes it possible to generalize the results of
[14] to the temperature range of . Note
that Eq. (3) correctly describes the dynamics of the
order parameter at frequencies  [40].

For simplicity, we disregard the electrochemical
potential in Eq. (3), thus neglecting the processes of
conversion between the superconducting and normal
currents. These processes take place on a scale

, where  is the
equilibrium magnitude of the order parameter and

. Such approximation is valid when
, where  is the characteristic length of

perturbations of the order parameter under the effect
of the electromagnetic wave. The scale  is deter-
mined by the solution of Eq. (3) and, as shown below,
is , . In the case

, the conversion scale  is comparable with the
coherence length ξ, so that the region of applicability
for the used approximation is determined by the
condition . On the other
hand, in the case of well-developed superconductivity

, the expression for the conversion scale takes
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the form , which makes it possible to
consider a wider temperature range near the critical
temperature than that in [14], as well as large radii
of superconducting disks. In this case, the limit on
the possible R and ω values in the calculation of
the inverse Faraday effect takes the form

.

Further, we solve a time-dependent problem using
the perturbation theory, in which the small parameters
are the amplitude of the incident electromagnetic
wave and the parameter . The amplitude of the
incident electromagnetic wave is treated as small if the
induced perturbation of the order parameter is much
less than the magnitude of the order parameter in the
absence of the wave. We assume that the zero-order
solution of Eq. (3) is a uniform static order parameter
whose amplitude  is temperature-dependent and
the phase is assumed to be zero for definiteness. For
further calculations, it is convenient to explicitly intro-
duce the amplitude and phase of the order parameter

 and solve the problem by perturbation
theory methods: , χ = χ1 +

, where  and  ( ) are propor-

tional to the small parameter . We also
introduce the dimensionless parameter β =

, which is  in the limiting case of

gapless superconductivity and is  in the
low-temperature limit. Then, in the first order of the
perturbation theory, Eq. (3) for  and  takes the
form
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We assume that the boundary conditions for the order
parameter coincide with the boundary conditions of
the time-independent Ginzburg–Landau theory:

(5)

Considering harmonic processes, we introduce com-
plex amplitudes  corresponding to quantities p (any
of the quantities , , and A) as follows:

(6)

Since the system is cylindrically symmetric, we look
for a solution of Eq. (4) in the form

(7)

where  is the first-order Bessel function. Substi-
tuting Eqs. (7) into Eq. (4) and separating the real and
imaginary parts, we obtain a system of algebraic equa-
tions:

(8)

where  and . The admissible
wavenumbers q included in Eq. (7) are determined by
the characteristic equation of the system (8) and have
the form (in the derivation, we neglect the terms on
the order of )

(9)

It should be noted that the vector potential A appears
only in the boundary conditions (5), inducing oscilla-
tions of the phase of the order parameter. Further,
because of electron–hole asymmetry, these phase
oscillations excite oscillations of the magnitude of the
order parameter with the amplitude proportional to

. The characteristic spatial scale of the phase varia-
tion is determined only by the wave vector 
( ), while the scale of the perturbation of the
magnitude of the order parameter is determined by
both vectors  and . Taking into account the bound-
ary conditions, the spatial profiles of the magnitude
and phase of the order parameter take the form

(10)

(11)

Expressions (10) and (11) allow the calculation of the
time-averaged magnetic moment M of the disk and
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the time-averaged azimuthal superconducting current
component :

(12)

where

(13)

Substituting the expressions for  and  into Eq. (13)
and integrating over the radial coordinate in Eq. (12),
we finally obtain the time-independent component of
the magnetic moment in the form

(14)

where  and

(15)

Here, , and ,
where  is the nth-order Bessel function and the
prime stands for the first derivative. We note that

 and  at any valid parameters.
The form of the temperature and frequency depen-

dences of the calculated magnetic moment M is deter-
mined by the relation between four key parameters:
radiation frequency ω, renormalized inverse Ginz-
burg–Landau time ωGL = βτ–1, and two inverse times

 and , where  is
the Thouless time for a disk.

To illustrate the mechanism responsible for the
appearance of a maximum on the dependences 
at a fixed frequency, we first consider the case of large
disks, for which . In this case, perturba-
tions of the magnitude of the order parameter and of
the electrochemical potential caused by the derivative

 are localized near the edge of the disk, and the
spatial decay scale of  determined by the wavenum-
ber  in Eq. (9) depends on the ratio between the radi-
ation frequency ω and the ωGL value. At a fixed fre-
quency in the high-frequency region, where ω ≫ ωGL,
the wavenumber  depends on T only through the
weak dependence , so that, as the temperature
decreases, the magnetic moment increases as ,
which corresponds to the temperature dependence of
the quantity . At a further decrease in the tempera-
ture, the frequency ω becomes less than ωGL, and the
scale of radial decay of perturbations  becomes on
the order of ξ. In this case, the phase difference
between the perturbation of the magnitude of the
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Fig. 2. (Color online) Temperature dependences of the
magnetic moment of the disk for different frequencies of
the incident circularly polarized wave. The calculation was
made for  and .= ξ015R Δ Γ0 = 5

Fig. 3. (Color online) Schematic representation of differ-
ent ranges of parameters and asymptotic expressions for
the magnetic moment obtained with the parameters (a)

,  and (b) , .
The areas of applicability of various asymptotic expres-
sions for the magnetic moment are schematically marked
with color. The I–II and IV–V boundaries; II–IV, I–III,
and I–V boundaries; III–IV boundary; and III–V bound-

ary are defined by the relations , ,

, and , respectively.

(a)

(b)
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order parameter and the azimuthal velocity compo-
nent tends to , which, in accordance with Eq. (13),
effectively leads to the suppression of the magnetic
moment. To describe the crossover between the two
described regimes, we take into account that the pre-
viously defined function  at large magnitudes of
the complex argument may be represented in the form

. The substitution
of this function into Eq. (15) and Eq. (15) into Eq. (14)
gives the following expression for the magnetic
moment (corresponding dependences  are
shown in Fig. 2):

(16)

This dependence  has a maximum at .
The substitution of an explicit expression for β into
this condition leads to a quadratic equation for the
quantity ε, corresponding to the magnetic moment

maximum: . In contrast to the
case of gapless superconductors, the frequency depen-
dence of this temperature is nonlinear. The physical
reason for the appearance of the maximum is the
dephasing between the oscillations of the magnitude
and phase of the order parameter with a decrease in
the temperature and, correspondingly, in the charac-
teristic relaxation time of perturbations in the super-
conducting condensate.

Now we analyze the frequency dependence of the
magnetic moment at different temperatures. To this
end, it is convenient to use the diagrams on the tem-
perature–frequency plane shown in Fig. 3 for disks
with different ratios between the radius R and the spa-
tial scale . Regions denoted by Roman
numerals correspond to asymptotic regimes with dif-
ferent temperature and frequency dependences of the
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magnetic moment, and the solid lines indicate the
boundaries between regions. In the high-frequency
limit, when ω exceeds all other characteristic inverse
times ωGL, , and  (region I), the expression for M
takes the form

(17)

In the opposite limiting case, where the radiation fre-
quency is much less than the other characteristic
inverse times, the magnetic moment behaves as

, but the factor in this expression depends
on the relation between the radius and the tempera-
ture-dependent coherence length ξ: near Tc (at ,
region III),

(18)
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while at lower temperatures, where  (region IV),

(19)

Note that the behavior of the magnetic moment in the
high- and low-frequency limits qualitatively coincides
with the behavior of M in the case of gapless supercon-
ductors. At the same time, there are significant differ-
ences between these two cases in the region of inter-
mediate frequencies. The main one is the existence of
two different frequency scales  and , which coin-
cide with each other in the zero gap limit. The differ-
ence between these scales leads to the existence of
region V in the diagram for  (Fig. 3a),
which is absent for gapless superconductors and in
which

(20)

The boundaries of this region are determined by the
condition  for the case  and the
condition  for the case . In the
case of large-radius disks, for which 
(Fig. 3b), the intermediate frequency region
(region II) is limited to the frequency interval

 and exists only at . The mag-
netic moment in this region is described by Eq. (16).

It should be noted that, in contrast to the case of
gapless superconductors, the boundary between
regions I and II, at which the magnetic moment
reaches its maximum as a function of the temperature,
is nonlinear, which shifts the maximum to lower tem-
peratures. This circumstance should facilitate a more
accurate experimental detection of the maximum,
since it corresponds to the temperature range of well-
developed superconductivity. A similar maximum on
dependences  is observed also at the transition
from regions III to regions IV for disks of an arbitrary
radius.

For the experimental observation of the inverse
Faraday effect, it seems optimal to use high-tempera-
ture cuprates or iron-based superconductors. Their
advantage is due to the relatively large value Δ/EF
(and, accordingly, a large γ value) and low values of
the density of states, which result in a smaller depolar-
ization-induced suppression of the field. Using the
parameters  K and τph ~ 10–12 s [41, 42], we

obtain the characteristic values  s and
. Within our model, the electron–pho-

non relaxation time τph limits the radiation frequency

. At such frequencies, the maximum on the
dependence  is determined by the condition

, which is reached at temperatures

ξR @

γ βωτ
ξ ε

6 2
0

IV 2
0

7= .
192

G RM

Δω χω

( )ξ Δ Γ0 0/R !

γ β ε
ξ ω

6 3

V 2
0

7= .
48

G RM

Δ χω ω ω! ! ξR !

χω ω ωGL ! ! ξR @

( )ξ Δ Γ0 0/R @

χω ω ωGL! ! ξR @

ε( )M

c 100T ∼

−τ × 14
0 2 10∼

Γ Δ0/ 0.01∼

−ω τ 1
ph�

( )M T
βε ωτ0= /2
, where  s−1. An
alternative method for detecting the inverse Faraday
effect is based on the nonequilibrium excitation and
subsequent detection of vortices of different polarities
generated by the Kibble–Zurek mechanism (see [43]
and references therein). In this case, the dynamics of
vortices after rapid cooling of the sample leads to the
preferential exit of vortices of a certain polarity from
the disk. One of the key parameters that determine the
final difference in the number of vortices having oppo-
site polarity is the localization scale of the supercon-
ducting current near the edge of the disk, which is
determined by the quantity . This value is much
larger in the Kramer–Watts-Tobin model than in the
gapless superconductivity model, which should lead to
more efficient generation of nonzero disk vorticity.

Thus, we have shown that the temperature depen-
dences of the magnetic moment of the disk have a
maximum in a wide range of system parameters. The
maximum for disks of a sufficiently large radius

 in the limit of high frequencies (at
) is reached at temperatures determined by the

condition , while the position of the maxi-
mum in the opposite limiting case (at ) is
determined by the condition . It has also been
shown that the finite superconducting gap in the exci-
tation spectrum for small disks with a radius

 leads to the appearance of new regimes,
which are absent in gapless superconductors. In par-
ticular, an additional interval of radiation frequencies
arises at , where the magnetic moment of the disk
depends on the temperature and frequency as

. In conclusion, we note that the depo-
larization effects described by Eq. (1) can change the
frequency and temperature dependences of the mag-
netic moment; therefore, the determination of param-
eters that are optimal for the experimental observation
of the predicted effects requires an analysis of the
geometry of a particular sample.
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