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INTRODUCTION

The experimental detection of a new state of mat-
ter—quark–gluon plasma—at the relativistic heavy-
ion collider (RHIC) was a remarkable discovery [1].
This new phase is close in properties to a strongly
interacting almost ideal opaque liquid [2], although
early theoretical works predicted the appearance of an
almost noninteracting quark–gluon gas [3]. The more
recent lattice simulation [4] showed that a phase tran-
sition from hadron matter to the new state in QCD
with 2 + 1 f lavors is a crossover and occurs in the tem-
perature range of 140–200 MeV at zero baryon chem-
ical potential. In this case, the quark–gluon plasma
remains strongly interacting even at much higher tem-
peratures [4]. Effects that can be observed experimen-
tally are of great importance for the investigation of the
properties of quark–gluon plasma. One of such effects
is the chiral separation effect [5, 6], i.e., the appear-
ance of an axial current along an external magnetic
field in the presence of a chemical potential in equilib-
rium. The authors of [5] predicted the effect for non-
interacting fermions in an effective theory. They
obtained the following expression for the axial current
in the massless case:

(1)

It is commonly accepted currently that the interaction
significantly affects the chiral separation effect. Con-
sequently, it is of interest to study the possibility of the
chiral separation effect in the quark–gluon plasma,
more precisely, to examine how significant the strong
interaction suppresses this effect. All calculations are
performed using the method of field correlators,
which makes it possible to well describe the properties

of both the hadronic phase of QCD and the quark–
gluon plasma [7–13].

METHOD OF FIELD CORRELATORS
Because of the strong interaction, the description

of the quark–gluon plasma requires nonperturbative
methods in addition to the summation of perturbative
series. The method of field correlators at finite tem-
peratures in the external magnetic field is used. The
complete description of this approach is given in [7–
13]. Here, the construction of this method is briefly
presented. The gluon field is divided into the perturba-
tive ( ) and nonperturbative ( ) parts. It is assumed
that the latter satisfies certain conditions and should
be taken into account exactly, whereas the former can
be taken into account using perturbation theory. The
nonperturbative part is separated into the color-elec-
tric ( ) and color-magnetic ( ) components.
The correlators quadratic in strength can be intro-
duced for them in the form1
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where , Nc is the number of colors, g is the
coupling constant, and  is the Wilson loop
connecting the points z and z'. At zero temperature,
the scalar function  leads to the area law between
color charges (the string tension is specified in the

form , ).

At temperatures of 160 MeV and higher, the func-
tions  (which does not lead to confinement) and

 play the main role, whereas  vanishes.
The first function is responsible for the appearance of
an analog of the Polyakov line, and the second func-
tion leads to the appearance of a nonperturbative
Debye mass [14]. Near the confinement–deconfine-
ment transition and at much higher temperatures,
quarks and gluons, which move in external nonpertur-
bative color fields, are the main degrees of freedom
that make a contribution to the thermodynamic
potentials in the method of field correlators. Their
contributions can be taken into account separately
(the so-called “single line approximation”). The pro-
duction of particles can be neglected in the first
approximation [7, 9, 11, 12], which results in the
description of the system with a single-particle basis of
states.

According to aforesaid, the Ω potential can be rep-
resented in the form

(4)

All thermodynamic characteristics of the system
(pressure, energy density, etc.) can be obtained from
the Ω potential. Following [10],

where Nc = 3, , mq is the quark

mass,  is the Wilson loop determined by the path
C, and averaging is carried out over external nonper-
turbative fields A. In the temperature range of interest,
Wilson loops are factorized [10]:

(5)

Here,  is the “Polyakov line,” which appears at n
turns around the compact direction, and  is the
spatial projection of the Wilson loop. As a result,
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Here,  is the three-dimensional Green’s function
that is constructed along a closed spatial path and
includes the color-magnetic interaction between
quarks:

(8)

For temperatures below 1 GeV, it can be shown that
the following equality is approximately valid:

(9)
Here, L corresponds to a single turn and is specified in
terms of the interaction potential between color
charges as

(10)

The leading contribution from the strong interac-
tion (caused by ) could seemingly be interpreted
simply as a constant zeroth component of the gauge
potential, but the expression for an analog of the
Polyakov line includes the quantity

(11)

This dependence shows that the potential value in the
Polyakov line appears from a nonlocal expression.

The magnetic field leads to the formation of Lan-
dau levels. This is not obvious in the case of the strong
interaction and should be justified additionally. How-
ever, the lattice simulation in [15] showed that the
zeroth Landau level exists and has a certain spin pro-
jection. For this reason, it is reasonable to focus on the
contribution from the zeroth level. This simplification
is justified because it was shown in [5] that it is the only
level contributing to the chiral separation effect if all
other levels are doubly degenerate. It is also assumed
that all higher Landau levels are doubly degenerate.

The effect of the uniform external magnetic field in
the path integral changes the expression for the phase
volume and energy [10]:
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Fig. 1. (Color online) Axial current in the chiral
separation effect with the normalization coefficient
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In these formulas, Ls = 0.104Tc, where Tc =
160 MeV. Expression (8) for the square of the Debye
mass MD appears nonperturbatively and is expressed
in terms of the spatial string tension in the method of
field correlators [14], and  is the running cou-
pling constant in the two-loop approximation. As a
result, the expression for the pressure can be written in
the form

(17)

The total pressure is obtained by summing over all f la-
vors. Such a representation is the most conventional
for the calculation of the chiral separation effect
because it allows one to separate the contribution of
the zeroth Landau level and to calculate its thermody-
namic characteristics. The chemical potential can be
introduced as  and leads to the following
replacement in Eq. (17):

(18)

CALCULATION OF THE AXIAL CURRENT
The contribution from the zeroth Landau level is

calculated as follows.2 In the chiral basis,

(19)

If fermions are the eigenstates of the σz operator
 with the same eigenvalues, Eq. (19)

takes the form

(20)
In the case of the zeroth Landau level,

(21)

Consequently, the known thermodynamic relation

(22)

2 We do not consider the effect of the magnetic field on the Polya-
kov line because this effect is insignificant in the region available
for experimental verification.
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can be used to obtain the expression for the chiral sep-
aration effect in the form

(23)

where

(24)

(25)

Here,  and  are given by Eqs. (12) and
(11), respectively. The axial current that is calculated
for the zeroth Landau level and is multiplied by the

coefficient , where i is the f lavor of
quarks and μ = 10 MeV, is shown by red line in Fig. 1.

The coefficient  for the noninteracting theory is

also indicated by the solid horizontal straight line in
Fig. 1.

In terms of the method of field correlators, this
result is fairly clear: the chiral separation effect is
strongly suppressed at the physical masses of quarks in
the hadronic phase of QCD because the energy of any
excitation is related to the string tension energy, which
is much higher than the temperature and the chosen
chemical potential. The main contribution to the ther-
modynamic description in confinement–deconfine-
ment transition region T = 140−200 MeV comes from
the Polyakov line, which increases very rapidly and, as
a result, ensures a fast increase in the main thermody-
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namic potentials. The Polyakov line at temperatures
above 300 MeV is close to unity, and the main effect is
due to the nonperturbative Debye mass, which
behaves as MD ~ g2(T)T. In the fermion distribution,
the square of the Debye mass is divided by the square
of the temperature; consequently, its effect is propor-
tional to the fourth power of the coupling constant and
to the coefficient in Eq. (15).

DISCUSSION AND CONCLUSIONS

To summarize, an expression for the chiral separa-
tion effect has been derived using the method of field
correlators by expanding in Landau levels including
the contribution from the zeroth Landau level. It has
been shown that the axial current directed along the z
axis is equal to the charge density in the zeroth Landau
level. This relation is also valid in the presence of the
strong interaction. The results have been obtained
using the most apparent method. However, all calcu-
lations can also be carried out using the linear
response formula, which is more convenient, e.g., to
calculate the chiral vortex effect in the quark–gluon
plasma because it is difficult to apply the method of
field correlators to the rotating quark–gluon plasma.
An obvious advantage of this method is the reduction
of the calculation of the axial current to the calculation
of the derivative of the thermodynamic potential for
the zeroth Landau level. Therefore, in the case of the
exact description of thermodynamics even at the level
of “coincidence of theoretical curves with experimen-
tal data,”3 a correct quantitative result for the chiral
separation effect is obtained. Unfortunately, the con-
sideration of contributions from higher Landau levels
in this case requires a more detailed study because the
assumption accepted in this work that levels are doubly
degenerate, on one hand, leads to zero contribution
from higher levels and, on the other hand, can be too
optimistic because interactions can mix Landau levels.
These contributions will be taken into account in
future studies. It would also be of interest to compare
the results obtained in this work with the results
recently obtained in [16].
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