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We consider an approach to engineer an optical dimer of particles operating in the spectral region near the
dipolar resonance that exhibits parity–time symmetry-like features. Both particles are assumed to be made
of a gain medium with the same refractive index and extinction coefficient. We suggest introducing a gain–
loss contrast by altering the radiative loss of the particles through changing their shape. To demonstrate our
approach, we consider a dimer of infinite filled and hollow cylinders. We demonstrate that a larger hollow
diameter leads to a stronger radiative decay. Then we find the parameters of a dimer that has an exceptional
point at a real frequency and exhibits two real eigenfrequencies when the gain–loss contrast is decreased.
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Fig. 1. (Color online) Sketch of the system studied, a dimer
of a hollow cylinder and a filled cylinder.
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During the last decade, a lot of research has been
conducted in the field of non-Hermitian photonics
[1–4]. The unintuitive physics that arises from the
non-Hermiticity, such as the existence of real Hamil-
tonian eigenvalues in the systems that obey parity–
time ( ) symmetry, and the exceptional points
where the Hamiltonian becomes degenerate (non-
diagonalizable), leads to a plethora of optical effects,
such as single mode lasing in a two-resonator setup
[5], unidirectional transmission of light without
reflection [6, 7], violation of reciprocity [8], and split-
ting of eigenfrequencies according to the root law
when the degeneracy is lifted [9].

These effects have been successfully demonstrated
in systems that are large compared to the wavelength,
such as coupled waveguides, coupled ring and disk res-
onators, and flat layered structures. The non-Her-
miticity is introduced by loss and gain from the
medium absorption and stimulated emission under
pumping, respectively [10], or by applying a spatially
structured optical pumping to the gain medium [11].
To fabricate non-Hermitian metasurfaces with unique
properties based on the  symmetry and exceptional
points, one needs to use resonant particles with a size
comparable to, or smaller than the wavelength. In this
case, application of spatially-structured optical pump-
ing is hindered by the diffraction limit, while fabrica-
tion of metamaterials with a unit cell consisting of gain
and lossy media requires a complex technological pro-
cess.

Here, we consider the idea of shaping the resona-
tors made of a gain medium to achieve a gain–loss
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contrast by increasing the radiative loss, allowing a
-symmetric metasurface design solely from a gain

medium operating under uniform pumping. To
demonstrate the approach, we chose the simplest sys-
tem to analyze, that is a dimer of an infinite cylinder
made of a dielectric gain medium, and an infinite hol-
low cylinder made of the same material, which is
shown in Fig. 1. We consider the TE polarization,
where the magnetic field vector is oriented along the
cylinder axes. We demonstrate that the radiative loss
becomes stronger when a hole is introduced, therefore
it becomes possible to achieve a gain–loss contrast in
a dimer made of the same material. Then we find the
geometry of a dimer consisting of a cylinder and a hol-
low cylinder, that corresponds to an exceptional point,
and analyze its eigenfrequencies and scattering spectra
in the vicinity of the exceptional point.
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-symmetric and exceptional point photonics is
conventionally studied in the framework of non-Her-
mitian two-level models well known from cavity quan-
tum electrodynamics (QED), by assigning “levels” to
the localized excitations in the resonators or wave-
guides [12]. Systems that are large compared to the
wavelength, have been studied comprehensively and
are well described by those models. However, despite
the simplicity of the two-level model, rigorous treat-
ment of the underlying electromagnetic wave propaga-
tion problem often appears to be quite complicated.
The reason behind this complexity is that, in contrast
to cavity quantum electrodynamics, where different
kind of particles are coupled (e.g., excited electron and
a photon being the levels and the coupling is carried by
inter-level quantum transitions), in coupled resona-
tors, levels and the coupling are essentially the same
kind of excitation, namely, the electromagnetic field.
This, in turn, leads to two consequences that compli-
cate the problem.

The first one is that the energy exchange between
the resonators is carried by electromagnetic waves
involving retarded potentials. The coupling, in turn,
becomes subject to these retardation effects. In pho-
tonics, the effective two-level Hamiltonian is defined
as the time evolution operator of the system, so it
becomes dependent on its own eigenvalue, i.e., the
frequency. However, if the resonators are large com-
pared to the wavelength, it is possible to treat them as
waveguides, which have translation symmetry allow-
ing to introduce a wave vector, which becomes the
eigenvalue of the system master equation, instead of
frequency.

The second complication is the existence of the
radiative loss, making the losses and coupling insepa-
rable. In waveguide-like structures, such as resonators
operating on whispering gallery modes, the radiative
losses are usually negligible, with the main loss chan-
nel usually being either scattering or absorption,
allowing the coupled system to be treated by a two-
level model. In contrast, when the size of the resona-
tors is comparable to the wavelength, the radiative loss
remains intertwined with the coupling [13].

Despite these difficuities, it is possible to formulate
a two-level model using an approach based on the
multiple scattering theory for coupled photonic reso-
nators operating on the dipolar Mie resonance, how-
ever the effective Hamiltonian  turns out to be
dependent on its own eigenvalue [13]:

(1)

where  is the dimer complex eigenfrequency,  are
the scattering poles of each scatterer (a cylinder and a
hollow cylinder) in the dimer and  are the respec-
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tive oscillator strengths,  is the Hankel function
of the first kind which describes the dipole field in the
2D space, c is the lightspeed and d is the distance
between the centers of the cylinders.

To describe the electromagnetic waves around the
cylinders, we use the basis of multipoles that are
described by the Bessel and Hankel functions. In this
case, scattering on a cylinder is described by the
Lorenz–Mie coefficients. For infinite cylinders of
radius , the scattering Lorenz–Mie coefficient can
be expressed as

(2)

where

 is the cylinder refractive index, l is the azi-
mutal number, which is equal to zero for dipoles, and

.
The scattering poles are the points where the

denominator of the 2D Lorenz–Mie dipole scattering
coefficient becomes zero, i.e., . By
solving this equation for the , we obtain the refrac-
tive index  of the cylinder, which has a scattering
pole at the frequency . After that, the
Lorenz–Mie coefficient can be approximated as

(3)

in the vicinity of the scattering pole, where  is the
oscillator strength.

Next, we consider a hollow cylinder, which can be
treated as a core-shell particle. By matching the
boundary conditions on the interfaces, one may arrive
at the following formula for the scattering Lorenz–
Mie coefficient of a hollow cylinder with a shell refrac-
tive index , external radius  and internal radius :
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Fig. 2. (Color online) Dependences of the dipolar scatter-
ing pole of an infinite hollow cylinder made of a dielectric
with a complex refractive index  on the hollow
radius ( ), respective to the external radius ( ): resonant
frequency (a), resonant state damping rate (b) and oscilla-
tor strength (c). TE polarization, refractive indices 
and , and extinction coefficients κ = –0.5, –0.4, ...,

 considered.

+ κ� =n n i
hR cR

= 2n
= 4n

+0.1
and .

To find the scattering poles, we once again equate
the denominator of the scattering coefficient to zero:

(5)

By solving this equation for , we can obtain the shell
refractive index  and the hollow radius , which cor-
respond to a hollow cylinder having a scattering pole at
the frequency . Then the scattering coef-
ficient  may be approximated in the vicinity of the
pole in the same manner as in Eq. (3).

Let us study the dependence of the radiative loss
with the hollow radius. Figure 2a,b show the depen-
dences of the eigenfrequency  and the eigenstate
damping rate  of hollow cylinders with various
refractive indices on the diameter of the hollow, while
Fig. 2c shows the corresponding oscillator strengths

. The losses can be seen to increase with increasing
the hollow diameter. To distinguish between the
increase of the radiative loss and the decrease of the
gain medium volume, gain media ( , shown with
solid and dashed lines), zero-loss zero-gain media
( , shown with dotted lines) and absorptive
media ( , shown with dash-dotted lines) have
been studied. In all three cases, the losses increase
while the medium volume decreases, therefore this
increase can be attributed to the radiative loss.

The increase in the radiative loss is accompanied by
a frequency shift, as can be seen from Fig. 2a. As we
are interested in introducing a gain–loss contrast
without a frequency shift, a scale transformation
should be applied to the hollow cylinder to alleviate
the frequency shift.

Let us now analyze the eigenfrequencies of a dimer
composed of a cylinder and a hollow cylinder. The
Hamiltonian is dependent on its eigenvalues, making
the equation for the eigenfrequency non-quadratic.
Therefore, to find the dimer eigenfrequencies, one has
to search for the zeros of the function , which is
defined as follows

(6)

We search for the exceptional point, which is the
point where two or more eigenfrequencies coalesce.
Using a Taylor expansion, one may easily demonstrate
that such a point  satisfies the following conditions
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Solving this equation system for the scattering poles
, one arrives at the following expression

(8)

where  and .
Using Eq. (8), one may find the scattering poles of the
particles, which, placed at the distance d, will form a
dimer that is at the exceptional point, i.e., only has one
eigenmode at the frequency  instead of a pair of
eigenmodes at different frequencies.

Using Eq. (8), we find the scattering poles of a
dimer that is expected to have an exceptional point at
the frequency  (which corresponds to
the vacuum wavelength 530 nm and the cylinder
radius  nm). We also fix the distance between
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Fig. 3. (Color online) Eigenfrequencies of a dimer consist-
ing of a hollow and filled cylinders, as the dependence of
the complex detuning  on the exceptional point:
eigenmode frequency (a), eigenmode damping rate (b).

δω − δγi

Fig. 4. (Color online) Spectra of the outflowing energy of
the dimer of hollow (radius ) and filled (radius ) cyl-
inders made of a gain medium with a refractive index

 illuminated by a plane wave, as depen-
dences of the hollow radius ( ). TE polarization.

sR cR

−� = 1.99 0.488n i
hR
the centers at , which leads to a purely
imaginary difference between the scattering poles,
necessary for the  symmetry regime. The following
scattering poles are then found from Eq. (8):

, which corresponds to
, and . In

order to match the frequencies  and , the hollow
cylinder has been upscaled, so that its external radius
would become , where  is the radius of
the filled cylinder. The hollow radius corresponding to
the scattering pole at  is . The oscillator
strengths of the cylinders then become  and

.
These values have been substituted into the effec-

tive Hamiltonian at Eq. (1). Then, to check if the sys-
tem is indeed at the exceptional point, a symmetric
frequency detuning  was introduced
into the scattering poles given by Eq. (8): 

, and 
. The eigenfrequencies 

iγ± of the Hamiltonian were then sought for, as the
dependence of the complex detuning . The result-
ing eigenfrequency sheets, shown in Fig. 3, display the
topology resemblant of the Riemann surface of a com-
plex square root function, which is a characteristic fea-
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ture of an exceptional point [1, 3, 4]. We also note that,
when only the gain–loss contrast is varied ( ), a
behavior similar to the  symmetry is observed.
When the gain–loss contrast is decreased compared to
its value at the exceptional point, the dimer has two
purely real eigenfrequencies. Increasing the gain–loss
contrast, in turn, leads to the  symmetry breaking-
like behavior, where a damped ( ) and an ampli-
fying ( ) modes exist at the same frequency
( ). We, however, note, that the dimer itself
does not possess the  symmetry in the rigorous
sense: because of a different geometry of the scatterers
(a filled and a hollow cylinder), the composition of a
parity and a time inversion transformations would
yield a different system compared to the dimer consid-
ered.

Finally, we consider the scattering spectra on the
dimer made of a gain medium with a refractive index

 and the extinction coefficient ,
consisting of a cylinder with a radius  and a hollow
cylinder with the external radius . To
obtain the scattering spectra, we use the multiple scat-
tering theory described elsewhere [13–24], consider-
ing only the dipolar contribution. The excitation is a
plane wave with an incidence direction normal to the
plane passing through the axes of the cylinders. As the
dimer is made of a gain material and exists at a radiant
regime, we consider the outf lowing energy, which we
define as the extinction cross-section taken with the
negative sign. The spectra are shown in Fig. 4 as a
dependence of the hole radius. Decreasing the hole
size leads to a decrease in the gain–loss contrast,
which is accompanied by a small eigenfrequency shift.

δω = 0
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PT

±γ < 0
±γ > 0

±ω ωEP=
PT

= 1.99n κ −= 0.488
cR
= 1.286s cR R
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This leads to a stronger coupling compared to the
exceptional point, which leads to a frequency splitting.
Increasing the hollow radius corresponds to an
increase in the gain–loss contrast, which leads to the

 symmetry breaking. In this regime, the eigen-
modes exist separately in the cylinder, which encom-
passes a radiant mode, and in the hollow cylinder,
which has a decaying mode at the same frequency.

CONCLUSIONS
We have considered infinite dielectric cylinders

with hollows and demonstrated that the radiative
losses increase with increasing hollow diameter. This
dependence allowed us to achieve a gain–loss contrast
between a hollow cylinder and a cylinder without a
hole made of the same material. Using the dipole
approximation, we derived the equations for the geo-
metric parameters of a dimer consisting of a cylinder
and a hollow cylinder, that has an exceptional point at
a given frequency. By selecting a purely real excep-
tional point frequency and a distance that corresponds
to a purely imaginary difference between the scattering
poles of the solid and hollow cylinder, we were able to
construct a dimer with a  symmetry-like behavior.
With decreasing gain–loss contrast, this dimer dis-
plays two purely real eigenfrequencies, while increas-
ing the gain–loss contrast leads to the appearance of a
damping and an amplifying mode at the same fre-
quency. We have analyzed the scattering spectra of the
dimers of the solid cylinder and a cylinder with varied
hollow diameter and demonstrated that decreasing the
gain–loss contrast by decreasing the hollow diameter
leads to emergence of a splitting of the resonance in
the spectra.

Our findings might be useful for designing the
metasurfaces operating almost at the  symmetry
and exceptional point regimes. We admit that the neg-
ative imaginary part of the refractive index as large as

, that is required for our dimer to exhibit the
 symmetry-like behavior, can not be realized in

optical gain media, which are currently limited by
. Such a strong gain is required to compensate

the strong radiative decay of the dipole resonances. At
the same time, the radiative losses, if not compen-
sated, will overwhelm the loss contrast, making the

 symmetry effects impossible to observe. There-
fore, considering the geometric resonances of a higher
order, such as quadrupole or octopole states, which
are characterized by a higher quality factor, seems to
be a way to alleviate this problem. In particular, halide
perovskites might be a suitable gain medium, as the
compensation of the radiative losses in quadrupole
and octopole states by gain, leading to single-particle
lasing, has been experimentally demonstrated on this
platform [25].

We considered infinite cylinders due to the sim-
plicity of analysis. To fabricate real structures one

PT
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PT

κ −= 0.5
PT

−κ 210∼

PT
would need particles with finite sizes, such as finite
cylinders. Hollow core waveguides can be used for
implementation in the terahertz range, as their tech-
nology of fabrication with the diameters as small as
10 μm is well established [26]. In optical range one
may use hollow cylinders fabricated by electron beam
lithography, which may have a radius as small as
100 nm. Heights of such cylinders can exceed the
radius by several times [27]. However, in this case the
resonance frequency is shifted from the value pre-
dicted by Mie theory (about 10% for the cylinder
height being equal to three times the radius [28]) due
to the coupling between the Mie modes and the
Fabry–Perot modes in the cylinder, so one would have
to take extra steps to treat this shift.

FUNDING

This work was supported by the Russian Science Foun-
dation (project no. 21-79-10190).

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

OPEN ACCESS

This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Com-
mons license, and indicate if changes were made. The images
or other third party material in this article are included in the
article’s Creative Commons license, unless indicated other-
wise in a credit line to the material. If material is not included
in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit
http://creativecommons.org/licenses/by/4.0/.

REFERENCES
1. R. El-Ganainy, K. G. Makris, M. Khajavikhan,

Z. H. Musslimani, S. Rotter, and D. N. Christ-
odoulides, Nat. Phys. 14, 11 (2018).

2. L. Feng, R. El-Ganainy, and L. Ge, Nat. Photon. 11,
752 (2017).

3. M.-A. Miri and A. Alù, Science (Washington, DC,
U. S.) 363, eaar7709 (2019).

4. Ş. K. Özdemir, S. Rotter, F. Nori, and L. Yang, Nat.
Mater. 18, 783 (2019).

5. L. Feng, Z. J. Wong, R.-M. Ma, Y. Wang, and X. Zhang,
Science (Washington, DC, U. S.) 346, 972 (2014).

6. Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao,
and D. N. Christodoulides, Phys. Rev. Lett. 106,
213901 (2011).
JETP LETTERS  Vol. 117  No. 11  2023



TOWARDS -SYMMETRIC OPTICAL DIMER FABRICATIONPT 809
7. L. Feng, X. Zhu, S. Yang, H. Zhu, P. Zhang, X. Yin,
Y. Wang, and X. Zhang, Opt. Express 22, 1760 (2013).

8. L. Feng, M. Ayache, J. Huang, Y.-L. Xu, M.-H. Lu,
Y.-F. Chen, Y. Fainman, and A. Scherer, Science
(Washington, DC, U. S.) 333, 729 (2011).

9. K. J. H. Peters and S. R. K. Rodriguez, Phys. Rev. Lett.
129, 013901 (2022).

10. B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfre-
da, G. L. Long, S. Fan, F. Nori, C. M. Bender, and
L. Yang, Nat. Phys. 10, 394 (2014).

11. H. Hodaei, A. U. Hassan, S. Wittek, H. Garcia-Gracia,
R. El-Ganainy, D. N. Christodoulides, and M. Khaja-
vikhan, Nature (London, U.K.) 548, 187 (2017).

12. A. F. Kockum, A. Miranowicz, S. D. Liberato, S. Sa-
vasta, and F. Nori, Nat. Rev. Phys. 1, 19 (2019).

13. A. A. Dmitriev and M. V. Rybin, Phys. Rev. A 99,
063837 (2019).

14. A. Egel, L. Pattelli, G. Mazzamuto, D. S. Wiersma, and
U. Lemmer, J. Quant. Spectrosc. Radiat. Transfer 199,
103 (2017).

15. D. Felbacq, G. Tayeb, and D. Maystre, J. Opt. Soc.
Am. A 11, 2526 (1994).

16. K. M. Leung and Y. Qiu, Phys. Rev. B 48, 7767 (1993).
17. P. Lloyd and P. Smith, Adv. Phys. 21, 69 (1972).

18. P. Markoš and V. Kuzmiak, Phys. Rev. A 94, 033845
(2016).

19. P. Markoš, Opt. Commun. 361, 65 (2016).
20. E. E. Maslova, M. F. Limonov, and M. V. Rybin, Opt.

Lett. 43, 5516 (2018).
21. A. Moroz, J. Phys.: Condens. Matter 6, 171 (1994).
22. N. A. Nicorovici, R. C. McPhedran, and L. C. Botten,

Phys. Rev. E 52, 1135 (1995).
23. G. Tayeb and S. Enoch, J. Opt. Soc. Am. A 21, 1417

(2004).
24. X. Wang, X.-G. Zhang, Q. Yu, and B. Harmon, Phys.

Rev. B 47, 4161 (1993).
25. E. Tiguntseva, K. Koshelev, A. Furasova, P. Tonkaev,

V. Mikhailovskii, E. V. Ushakova, D. G. Baranov,
T. Shegai, A. A. Zakhidov, Y. Kivshar, and S. V. Ma-
karov, ACS Nano 14, 8149 (2020).

26. F. Yu, W. J. Wadsworth, and J. C. Knight, Opt. Express
20, 11153 (2012).

27. Z.-B. Fan, H.-Y. Qiu, H.-L. Zhang, X.-N. Pang,
L.-D. Zhou, L. Liu, H. Ren, Q.-H. Wang, and
J.-W. Dong, Light Sci. Appl. 8, 67 (2019).

28. M. V. Rybin, K. B. Samusev, P. V. Kapitanova,
D. S. Filonov, P. A. Belov, Y. S. Kivshar, and M. F. Li-
monov, Phys. Rev. B 95, 165119 (2017).
JETP LETTERS  Vol. 117  No. 11  2023


	CONCLUSIONS
	REFERENCES

		2023-07-18T10:04:00+0300
	Preflight Ticket Signature




