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The effect of uniform rotation on the equation of state of gluodynamics has been studied in lattice simulation.
To this end, the system has been considered in the corotating reference frame, where the rotation can be mod-
eled as an external gravitational field. The free energy of the studied system in the case of sufficiently slow
rotation can be expanded in a power series in the angular velocity. The moment of inertia given by the second-
order coefficient of this expansion has been calculated and its dependence on the temperature and the dimen-
sions of the rotating system has been determined. Our results indicate that the moment of inertia of gluody-
namics is negative up to the temperature T* ~ 1.5Tc, where Tc is the critical temperature of the confine-
ment/deconfinement phase transition, and becomes positive at temperatures T > T*. The negative moment
of inertia has been attributed to the thermodynamic instability of the gluon plasma with respect to uniform
rotation.
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INTRODUCTION
Heavy-ion collision experiments make it possible

to study the effect of extreme conditions such as high
temperatures, strong electromagnetic fields, a high
baryon density, and fast rotation on the properties of a
strongly interacting quark–gluon plasma. The effect
of fast rotation on the quark–gluon plasma is of par-
ticular interest. The average vorticity of the formed
quark–gluon plasma is estimated from experimental
results for the polarization of the  hyperons as ω =
(9 ± 1) × 1021 s–1 [1]. Such a high angular velocity cor-
responds to relativistic rotation, which can strongly
affect the properties of the quark–gluon plasma.

The effect of relativistic rotation on the properties
of QCD is studied in numerous theoretical works. Var-
ious models such as the Nambu–Jona-Lasinio model

[2–9] and the hadron resonance gas model [10], as
well as the holographic approach to QCD [11–14] and
other methods [15–17], were used. Although interest-
ing results were obtained in these studies, analytical
methods of studying QCD have serious disadvantages
because QCD is a very complex theory, which cannot
be analytically studied without additional assump-
tions. Additional assumptions lead to uncontrolled
systematic errors in the results. Consequently, it is dif-
ficult to estimate the reliability of the predictions
obtained.

The above problem is absent for the lattice simula-
tion of QCD. This method makes it possible to study
the properties of QCD based on the fundamental prin-
ciples of quantum field theory, controlling the errors
of such calculations. We use this method in this work
to study gluodynamics. The first study of the proper-
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ties of rotating QCD was reported in [18]. Later, we
performed lattice simulations of the effect of rotation
on the thermodynamic properties of gluodynamics
[19–21] and QCD [22, 23].

The aim of this work is the lattice simulation study
of the effect of rotation on the properties of QCD. In
particular, we study the effect of rotation on the equa-
tion of state of gluodynamics by calculating the first
nonzero correction in angular velocity to the free
energy of the studied system. It is noteworthy that the
equation of state of gluodynamics and QCD, as well as
the effect of various extreme conditions on it, was
actively studied in lattice simulations (see, e.g., [24–
28]). The equation of state of rotating gluodynamics
was investigated in [29]. In this work, we carry out a
similar study by using another computational method.

LATTICE SIMULATION 
OF ROTATING GLUODYNAMICS

In this section, we briefly describe the lattice simu-
lation study of rotating gluodynamics and derive for-
mulas necessary for calculations. This approach was
described in more detail in [19, 20].

We calculate the partition function of the equilib-
rium system by the Monte Carlo method in the refer-
ence frame rotating with the studied “medium” about
the z axis. In this reference frame, rotation is mani-
fested in the form of an external gravitational field,
specified by the known metric tensor

(1)

where  is the distance to the rotation axis.
The partition function of gluodynamics in the

external gravitational field can be represented in the
continuous space in the form of the integral over the
gluon degrees of freedom [18–20]:

(2)

where

(3)

is the Euclidian action of the gluon field in the external
gravitational field, depending on the Euclidean metric
tensor (gE)μν, which can be obtained from Eq. (1) by
means of the Wick rotation . As in the partition
function without the gravitational field, the Euclidean
time τ varies in the range , and periodic
boundary conditions in the Euclidean time

 are imposed on gluon fields. Greek
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and Latin scripts are used in this work for Lorentz and
color indices, respectively.

The substitution of the metric tensor (gE)μν into
Eq. (3) gives the action in the form

(4)

According to this formula, the action is a complex
quantity, which leads to the sign problem. Unfortu-
nately, the direct Monte Carlo simulation of such sys-
tems is currently impossible. This problem can be
overcome by using a method based on the simulation
of the system at an imaginary angular velocity [18, 20–
29]. This method was used to study the equation of
state of rotating gluodynamics in [29]. In this work, we
use another approach. It is shown below that the free
energy can be expanded in a series in angular velocity.
The coefficients of this expansion are operators of
gluon fields, which can be calculated by simulating the
system without rotation. Thus, the sign problem does
not arise in this approach.

The action (4) with the imaginary angular velocity
is discretized as in [18–20]. We do not present the
explicit expression for the lattice action in this work
because it is lengthy. As mentioned above, the lattice
simulation of the nonrotating system is sufficient to
calculate corrections to the free energy in angular
velocity. To this end, we used the tree-level improved
Symanzik action [30, 31].

Boundary conditions are of particular importance
in the simulation of rotating systems. We performed
calculations with periodic boundary conditions in the
directions τ and z. Periodic, open, or Dirichlet bound-
ary conditions can be imposed in the directions per-
pendicular to the axis of rotation. Various boundary
conditions and their effect on observables were exam-
ined in detail in [20], where it was showed that the
dependence of various observables on boundary con-
ditions is insignificant because boundary conditions
are screened and do not affect the bulk of the studied
system. In this work, we use periodic boundary condi-
tions, which are usually used in lattice simulations of
gauge field theories (gluodynamics) without rotation.

The main aim of this work is to study the effect of
rotation on the equation of state, which can be deter-
mined if the free energy of the studied system F is
known. For this reason, we analyze the effect of rota-
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tion on the free energy of gluodynamics. We expand
the free energy in a series in angular velocity:

(5)

where  is the free energy of gluodynamics without
rotation and  is the next coefficient of the expansion.
The free energy of gluodynamics  is well studied
(see, e.g., [24]), and the coefficient  will be calcu-
lated below. In this work, we examine only the second
coefficient of the expansion because statistical errors
of calculations increase rapidly with the size of the sys-
tem in view of the structure of the studied operators. In
addition to  and , we use the specific quantities

 and , where V is the volume of
the studied system.

To determine , we represent the action (4) in the
form

(6)

where  is the action of the gluon fields without rota-
tion and

(7)

(8)

Using these formulas, the coefficient  can be repre-
sented in the form

(9)

where  is the contribution of
thermal f luctuations to the mean value of the operator

, the first term  corresponds to the average
square of the chromomagnetic field in the studied
medium, and the second term  reflects f luc-
tuations of the angular momentum of the gluon field
(it is taken into account that ).

To calculate the coefficient  by Eq. (9), it is suf-
ficient to perform the lattice simulation of gluody-
namics without rotation. Consequently, the sign prob-
lem is absent in our calculations, as mentioned above.
We studied the dependence of the free energy on the
angular velocity by another method in [29], where the
calculation was carried out by the simulation of gluo-
dynamics rotating at an imaginary angular velocity.
The derivative of the partition function with respect to
the inverse coupling constant  was calculated to
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extract the free energy. This derivative is related to the
mean value of the action of the gluon field  (4).
The free energy was calculated by integrating its deriv-
ative over the inverse coupling constant.

When studying the equation of state, the corre-
sponding operator at  is usually subtracted. Sim-
ilarly, Eq. (9) for the coefficient  at a finite tempera-
ture is evaluated with subtraction at zero temperature.
This procedure physically means that the vacuum of
gluodynamics at  does not rotate.

Formulas (6) and (9) allow us to obtain the expan-
sion of the free energy in angular velocity for continu-
ous theory. Lattice versions of these formulas can be
easily derived. To do this, we note that the lattice
expression of the action in the rotating reference frame
can be represented in the form of expansion (6). The
explicit form of the lattice operators  and  can be
found in [20]. We do not present here these lengthy
expressions. The lattice formula (9) for the coefficient

 has the same form, where the lattice expressions are
substituted for the operators  and .

The coefficient  is related to the moment of iner-
tia of the system given by the formula

(10)

where M is the angular momentum of the system. Fur-
ther, we use the nonrelativistic expression for the
moment of inertia to evaluate the dependence of the
coefficient  on the volume of the studied system:

(11)

where  and  are the mass density
and the volume of the studied system, respectively,
which is an  parallelepiped. The axis of
rotation passes through the center of the paral-
lelepiped and coincides with the z axis. It is taken into
account in the second equality in Eq. (11) that the
density in the leading approximation is independent of
the angular velocity and coordinates; i.e., it is a func-
tion  of only the temperature.

Expression (11) makes it possible to represent
expansion (5) in the following form, which is more
convenient for the analysis:

(12)

where  and  is the veloc-
ity at the center of the side face at a distance of 
from the axis of rotation. The coefficient  is used in
Eq. (12) instead of the coefficient  because it is
dimensionless and should be independent of the vol-
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Fig. 1. (Color online) Ratio  for lattices with
various time steps  versus the temperature in units of the
critical temperature Tc of the confinement/deconfine-
ment phase transition in gluodynamics without rotation.

c

4 2
2/( )sf T L

tN

Fig. 2. (Color online) Ratio  for lattices with dif-
ferent volumes in the x (y) and z directions versus the tem-
perature in units of the critical temperature Tc of the con-
finement/deconfinement phase transition in gluodynam-
ics without rotation.

c

4 2
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Fig. 3. (Color online) Coefficient  for lattices with vari-
ous time steps  versus the temperature in units of the
critical temperature Tc of the confinement/deconfine-
ment phase transition in gluodynamics without rotation.
Stars indicate the continuous limit , and the
results of the continuous limit are approximated by a
spline.

c
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ume for a sufficiently large system, as follows from
Eq. (11). This statement will be verified in the next
section. The coefficients  and  depend on bound-
ary conditions, but our calculations show that this
dependence is canceled in the ratio  within
the errors.

 RESULTS AND DISCUSSION

In this section, we describe the calculation of the
coefficient  in lattice simulation on 
( ) lattices. For the extrapolation to the
continuous limit  (lattice spacing ),
we carried out the simulation on ,

, and  lattices. The lattice sizes
were chosen such that the ratios  and

, where , , and
, approximately remain constant with the

variation of . The size of the lattice in the x and y
directions was chosen such that the axis of rotation,
when calculating the operators (7) and (8), passes
through a site of the lattice and the corresponding lat-
tice operators are symmetric with respect to this axis.
As mentioned above, to determine the coefficient  at
a finite temperature, this coefficient is also calculated
at zero temperature. For this subtraction procedure,
we used the lattices with the same spatial dimensions
but with .

Figure 1 presents the temperature dependence of
the ratio  for lattices with different number of
discretization steps  in the time direction. The tem-
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perature in Figs. 1–3 is given in units of the critical
temperature Tc of the confinement/deconfinement
phase transition in gluodynamics without rotation.

To study the dependence of our results on the size
of the system, we calculated the ratio  on

, , , and 
312 lattices. Figure 2 shows the temperature depen-
dence of the ratio  for lattices with different
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spatial volumes in the x (y) and z directions. It is seen
that the dependence of the ratio  on the sizes

 and  of the system is weak, which confirms the
estimate made in Eq. (11).

To determine the coefficient  on the ,
, and  lattices, we calculated 

and , then, the ratio  was taken
and extrapolated to the continuous limit .
The temperature dependence of the coefficient  for
lattices with different  values is presented in Fig. 3,
where stars indicate the continuous limit ,
and the results in the continuous limit are approxi-
mated by a spline. Only the temperature range T > Tc

is shown in Fig. 3 because  at T < Tc is close to zero
and the calculation errors increase significantly. For
this reason, the plot for the coefficient  below the
critical temperature becomes noninformative. Fig-
ure 3 is the main result of this work.

In this work, the lattice simulation of gluodynamics
without rotation was carried out and the first nonzero
correction to the free energy in the angular velocity
was directly calculated. At the same time, we calcu-
lated the coefficient  by a different method in [29],
where rotating gluodynamics was simulated, the free
energy was calculated for different angular velocities,
the calculations were completed by the expansion in
(imaginary) angular velocity, and the results were ana-
lytically continued to real angular velocities . The
results obtained by both methods are in agreement
with each other.

As seen in Fig. 3, the coefficient  is negative for
temperatures T < T* and becomes positive at T > T*,
where T* ~ 1.5Tc. According to Eq. (10), this coeffi-
cient is related to the moment of inertia of the studied
system as . Since , Fig. 3
indicates that the moment of inertia of gluodynamics
is negative up to the temperature T * ~ 1.5Tc and
becomes positive only above this temperature. We
suppose that the negative moment of inertia means the
thermodynamic instability of the gluon plasma with
respect to uniform rotation.1 The uniform rotation of
the plasma in thermodynamical equilibrium is possi-
ble at temperatures above T *. The thermodynamically
stable motion of the gluon plasma at temperatures
below T * is more complex, e.g., rotation at the angular
velocity depending on the coordinates. However,
additional studies are required to understand the phys-
ical mechanisms of this instability.

To reveal the reason for the negative moment of
inertia, we consider expression (9) for , which is the

1 It is worth noting that the negative moment of inertia is possible
in some systems [32–34], and thermodynamic instability caused
by rotation occurs in rotating black holes [35–37].
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sum of two operators. The first operator  is
related to the square of the chromomagnetic field in
gluodynamics, which appears in an important physi-
cal quantity, the gluon condensate 

. This operator determines the
energy of the vacuum in gluodynamics at  and
scale invariance breaking. With increasing tempera-
ture, the magnetic component of the gluon conden-
sate decreases from its value at , reaches a cer-
tain minimum, and begins to increase [24]. The con-
tribution from thermal f luctuations to the mean value
of this operator, which appears in Eq. (9), is propor-
tional to , is negative at 0 < T & 2Tc, and
becomes positive only at temperatures above T ~ 2Tc

[24]. The second operator , which is related
to f luctuations of the angular momentum, makes a
positive contribution to the moment of inertia, thus
slightly increasing it. Thus, the negative moment of
inertia of gluodynamics at temperatures  is
explained by the contribution from the magnetic com-
ponent of the scale anomaly.

As follows from Eq. (12) and from the results for
, rotation reduces the free energy of gluodynam-

ics near the critical temperature of the confine-
ment/deconfinement phase transition. Therefore, it
can be expected that this phase transition at 
requires an additional “heating” of the system. Fur-
thermore, the higher the angular velocity, the larger
the required heating of the system. Consequently, the
critical temperature Tc of the confinement/deconfine-
ment phase transition should increase with the angular
velocity of rotation. Thus, the result obtained in this
work is in qualitative agreement with the results
obtained previously in [19, 20].
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