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In this paper we study 1 + 1 field generalization of the rational N-body Calogero–Moser model. We show
that this model is gauge equivalent to some special higher rank matrix Landau–Lifshitz equation. The latter
equation is described in terms of  rational R-matrix, which turns into the 11-vertex R-matrix in the

 case. The rational R-matrix satisfies the associative Yang–Baxter equation, which underlies construc-
tion of the Lax pair for the Zakharov–Shabat equation. The field analogue of the IRF-Vertex transformation
is proposed. It allows to compute explicit change of variables between the field Calogero–Moser model and
the Landau–Lifshitz equation.
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1. CALOGERO–MOSER FIELD THEORY
1.1. 1 + 1 Field Generalization1 

of the Calogero–Moser Model
This model was proposed in [1, 2] (see also [3]).

The Hamiltonian is given by the expression2

(1.1)

where x is the (space) field variable. It is a coordinate
on a unit circle. Dynamical variables are the ( -val-
ued) fields , , , and the
subscript x means derivative with respect to x. For
instance, . The parameter  is a
coupling constant and  is an auxiliary parame-
ter, which can be fixed as  but we keep it as it is.
The momenta  and coordinates  are canonically
conjugated fields:

(1.2)

Equations of motion (the Hamiltonian equations
) take the following form:

(1.3)

(1.4)

GLN
= 2N

1 1 + 1 or 2d means 1 dimension for space variable and 1 dimen-
sion for time variable. In this respect mechanics is 0 + 1.

2 In [1, 2] the elliptic model was considered. In this paper we deal
with its rational limit.
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The model (1.1) is integrable in the sense that it has
algebro-geometric solutions and equations of motion
are represented in the Zakharov–Shabat (or Lax or
zero curvature) form

(1.5)

where U−V pair is a pair ,  of
matrix valued functions of the fields , ,

 and their derivatives. They also depend on
the spectral parameter z, and (1.5) holds true identi-
cally in z (on-shell equations of motion). Explicit
expression for U–V pair is as follows:

(1.6)

(1.7)

where

(1.8)

and

(1.9)

In what follows we assume the center of mass frame:

(1.10)

Notice that in our previous paper on this topic [4] we
used slightly different normalization coefficients and
the gauge choice for U–V pair, which was more conve-
nient for the case  when .
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1.2. Limit to 0 + 1 Mechanics
The finite-dimensional classical mechanics

appears in the limit . All the fields become
independent of x, and the field Poisson brackets turn
into the ordinary Poisson brackets for mechanical
N-body system:

(1.11)
The Hamiltonian density (1.1) in this limit provides
the ordinary Calogero–Moser model [5, 6]:

(1.12)

where  on the left-hand side assumes also transi-
tion to x-independent variables. Similarly, the
Zakharov–Shabat equation (1.5) reduces to the Lax
equation:

(1.13)

1.3. Purpose of the Paper
The 1 + 1 field generalizations under consideration

are widely known for the Toda chains [7]. For the rel-
ativistic models of Ruijsenaars–Schneider type the
field generalizations were proposed recently in [8]. In
[3] the results of [1, 2] were extended to (multi)spin
generalizations of the Calogero–Moser model. It was
also explained (using modification of bundles and the
symplectic Hecke correspondence) that the field
Calogero–Moser system should be gauge equivalent
to some model of Landau–Lifshitz type. That is, there
exist a gauge transformation , which
transforms U–V pair for the field Calogero–Moser
model to the one for some Landau–Lifshitz type
model:

(1.14)

For the  case explicit construction of the matrix
 and the change of variables was derived in [4],
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and the Landau–Lifshitz model for  rational
R-matrix was derived in [9]. The goal of this article is
to define the gauge transformation in  case,
describe the corresponding Landau–Lifshitz type
model and find explicit change of variables using rela-
tion (1.14).

2. RATIONAL TOP
AND LANDAU–LIFSHITZ EQUATION

2.1. Rational Integrable Top

In order to explain what kind of Landau–Lifshitz
model is expected in (1.14) we first consider its 0 + 1
mechanical analogue. The mechanical version of
(1.14) is as follows:

(2.1)

where  is the Lax matrix of some integrable top
like model. It is the model, which was introduced in
[10] and called the rational top. Equations of motion
for top like models are of the form

(2.2)

where S is a matrix of dynamical variables (  is the
standard matrix basis),  is a constant and  is
some special linear map (see [10]). The Hamiltonian
is quadratic, and the Poisson brackets are given by the
Poisson–Lie structure on  Lie coalgebra:

(2.3)

It was shown in [10] that in the special case 
(and ) this model is gauge equivalent (2.1) to
the rational Calogero–Moser model. Namely, it was
proved by direct evaluation that the expression on the
right-hand side of (2.1) is represented in the form

(2.4)

where ,  is some
classical non-dynamical r-matrix (satisfying the clas-
sical Yang–Baxter equation),  is the identity 
matrix and tr2 means trace over the second tensor

component in . The gauge equivalence
means that the Hamiltonians  (2.3) and 
(1.12) coincide under a certain change of variables,
which will be given below in (2.15).
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2.2. Description through R-Matrix

In [11] a construction of Lax pairs with spectral
parameter was suggested based on (skew-symmetric
and unitary) solution of the associative Yang–Baxter
equation [12, 13]:

(2.5)

In fact, a skew-symmetric and unitary solution of (2.5)
in the fundamental representation of  Lie group
is a quantum R-matrix; i.e., it satisfies also the quan-
tum Yang–Baxter equation .
Consider the classical limit expansion of such
R-matrix:

(2.6)

Then the Lax pair can be written as follows:

(2.7)
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2.3. Rational R-Matrix
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(2.9)

For  all its properties, different possible forms
and explicit expressions for the coefficients of expan-
sions (2.6) and (2.18) can be found in [16].

2.4. Rational IRF-Vertex Transformation

Following [10] introduce the matrix 
:

(2.10)

η η −η η−+
−

� � � �

12 23 13 12 23 13= ,

= ( ).x x
ab ab a b

R R R R R R

R R z z

GLN

� � � � � �

12 13 23 23 13 12=R R R R R R

⊗ + + +�
� �

�

2
12 12 12

1( ) = 1 1 ( ) ( ) ( ).N NR z r z m z O

 
 
 

 −  
 

2
top

2 12

2
top

2 12

( ) = tr ( ) ,

( ) = tr ( ) .

L z r z S

M z m z S

 
 
 

2

2 12( ) = tr (0) .J S m S

= 2N

+
− −

= − −

− − − − + + +

 
 
 
 
 
 

�

�

� �

� �

� � � � � �

12

3 3 2 2

( )
1/ 1/ 0 0 0

1/ 1/ 0
.

1/ 1/ 0

2 2 1/ 1/

R z

z

z z

z z

z z z z z z

> 2N

∈( )g z
Mat( , )N C

−Ξ
Ξ ∈

1
1( ) = ( , ,..., ) = ( , ) ( ),

( , ), ( ) Mat( , ),
Ng z g z q q z q D q

z q D q N C
JETP LETTERS  Vol. 117  No. 8  2023



GAUGE EQUIVALENCE 633
where

(2.11)

with

(2.12)

The matrix  is degenerated at : 

. It plays the role of IRF-Vertex
transformation for rational R-matrices [16]. The
inverse of matrix  is as follows:

(2.13)

where  and  are symmetric functions (for
variables ) defined as

(2.14)

Details can be found in [10, 16]. The latter formula
provides via (2.1), (2.4) explicit change of variables in
0 + 1 mechanics between the Calogero–Moser model
given by Eq. (1.13) and the rational top specified by
Eqs. (2.2), (2.3), (2.7), and (2.8):

(2.15)

Similar results are known for trigonometric [17] and
elliptic [3, 8] models.
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2.5. Landau–Lifshitz Equation

Recently the 1 + 1 field generalization of the Lax
pair (2.7) to U–V pair was suggested in [18]. In the
field case the Poisson brackets (2.3) are replaced with

(2.16)

The construction of U–V pair is again based on
R-matrix satisfying the associative Yang–Baxter equa-
tion (2.5). For this purpose, the following relation is
used (it can be deduced from (2.5)):

(2.17)

where  is the matrix permutation operator and  is
the coefficient in the expansion

(2.18)

Suppose , so that , .
Then the Landau–Lifshitz equation reads
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Then the U–V pair generating equations of
motion (2.19) through the Zakharov–Shabat equa-
tion (1.5) has the form

(2.21)
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Equations (2.19) are Hamiltonian with the Hamilto-
nian function

(2.23)

so that (2.19) is reproduced as 
with the Poisson brackets (2.16).

{ }
δ − δ δ −

( ), ( )
1= ( ( ) ( ) ) ( ).

ij kl

il kj kj il

S x S y

S x S x x y
N

−
− ∂ + + +

(0) (0)
12 13 23 12 13 23

13 23 12 23 13

( ) ( ) = ( ) ( )
( ) ( ) (0) ( ),z

r z r z r r z r z r
r z P m z m m z

12P (0)
12r

− + +1 (0)
12 12 12( ) = ( ).r z z P r O z

rank( ) = 1S 2 =S cS = tr( )c S

∂ ∂ + − ∂
2

2= [ , ] 2 [ , ( )] 2 [ , ( )],t x x
kS S S c S J S k S E S
c

⊗
∈ C

2 2
(0)

2 12( ) = tr ( ), = 1 ,
Mat( , ).

NE S r S S S
S N

+

2
LL top

2 12
LL

1 2

( ) = ( , ) = tr ( ( ) ),

( ) = ( ) ( ),

U z L S z r z S

V z V z V z

− ∂ +

− − ∂

top top
1

top
2 2

( ) = ( , ) ( ( ) , ),

( ) = ( , ), = [ , ].

z

x

V z c L S z L E S S z
kV z cL T z T S S
c

− ∂ ∂ + ∂

�
LL

2

= ( tr( ( ))

tr( ) tr( ( ))),
2

= ( ),

y y y

H dy cN S J S

Nk S S kN S E S
c

S S y

∂ LL( ) = { ( ), }tS x S x H



634 ATALIKOV, ZOTOV
3. GAUGE EQUIVALENCE
AND CHANGE OF VARIABLES

Introduce the matrix , where
 is the function

(3.1)

The statement is that by applying the gauge transfor-
mation with the matrix (3.1) we obtain the desired
relation (1.14).3 Calculations are performed similarly
to those in 0 + 1 mechanics [10]. As a result, we obtain
explicit change of variables:

(3.2)

with the properties

(3.2)

It is the 1 + 1 field generalization of the change of
variables in mechanics (2.15). It can be also verified that
the Poisson brackets for  (3.2) calculated
through the canonical brackets (1.2) indeed reproduce
the linear Poisson structure (2.16), so that (3.2) is a Pois-
son map. The Hamiltonian (1.1) of 1 + 1 field Calog-
ero–Moser model coincides with the one (2.23) for
the Landau–Lifshitz equation under the change of vari-
ables (3.2):  .
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